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Abstract

Laser pulse compress is an important technique in high data rate
communication system especially in the application of optical fiber network
sensing. Single Polarization Maintaining Fiber-Mach Zehnder interferometer
pulse compressor was designed using Comsol multi-physics version 5.5, with
8,16 and 24 cm Polarization maintaining fiber spliced between two segments of
SMF with lengths of 23 and13 cm. Single and cascaded polarization
maintaining fiber-Mach Zehnder interferometer were implemented using
1546.7nm and 286 pm full width at half maximum with 9 ns. Maximum
Excitation to the higher-order modes in the cladding region were visualized by
Comsol which indicated to optimum values of compression factors that are
1.1103 in the case of 5 g is applied on 8 cm on the cross-sectional area of the
Polarization Maintaining Fiber. Practically two compression factors were
obtained one with single polarization-maintaining Fiber-Mach Zehnder
interferometer , 5 g force that applied on the micro cavity splicing region that is
1.13 and second with cascaded polarization-maintaining Fiber-Mach Zehnder
interferometer with two Polarization Maintaining Fiber each with 8 cm length
and 10 g weight applied on the second PMF cross-sectional area which is 1.10.
Cascaded Polarization-Maintaining Fiber-Mach Zehnder interferometer has
minimum compression factor due to the fact of many splicing regions act as
double convex lens that cause excitation to the higher order modes propagated
in the fiber Interfromter and then causes broadening FWHM spatially and

compressed pulse temporally.
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Chapter One

Introduction and Basic Concept




1.1 Thesis layout

This thesis contains three chapters and is organize as follows:
Chapter One: Gives a general introduction about, all-fiber pulse compression
and the optical interferometers that are based on polarization maintaining fiber.

Then a brief literature survey related to optical pulse compression introduced.

Chapter Two: Presents the simulation and experimental setups and explained
the entire component and the equipment are used in experimental work. Then
explained how to design and construct inline interferometers, and using them

for all- fiber pulse compression.

Chapter Three: Illustrates and discuss the simulation and experimental results.
Next, summarizes the main conclusions drawn from this study followed by

suggests some points which need further investigation as a future work.



CHAPTER ONE

1.2 General Introduction and Motivation

The Compressed laser source is an essential part for high data rate

communication system in the applications of network fiber sensing and
wavelength division multiplexing[1-3]. The interest of the scientific community
has been focused on the development of new technologies of light sources and
applications based on special kind of fibers like high birefringent polarization-
maintaining fiber PMF which is a type of specialty fiber that can retain linear
polarized states of light propagation over a long distance on a single-mode
waveguide[4-8]. Polarization-Maintaining Fiber have a wide range of
applications in the telecommunications and sensor fields[9]. Panda-type PMF
have dominated on most of applications because of its flexible and compatible
with regular telecommunication optical fibers[10].
There are many advantages of using different arrangements of in-line fiber
interferometers in communications, optical modulation, pulse compression, and
sensing applications due to their ability to measure different parameters such as
pressure, force, strain, temperature, etc. along with having high sensitivity
immunity to electromagnetic interference and simple structure[11-14]. The most
significant types were those of cascaded in-line fiber interferometers for
example the in-line Mach-Zehnder interferometer can be used for this purpose
due their easy implementation. [15-18]. This work introduced a tunable narrow
pulsed laser source by using polarization-maintaining fiber to build an In-line
Mach-Zehnder fiber interferometer PM-MZI practically and theoretically with
three variable-lengths of single-mode PM fiber spliced between two segments
of SMF. A tunable interferometer was implemented by applying mechanical
forces on the cross-sectional area of the PM fiber and the micro cavity splicing
regions to change the interference cavity length.



1.3 Aim of the work

Design and construct in line cascaded PM-Mach zehnder interferometer pulse
compressor using spatial type of optical fiber that has zero polarization mode

dispersion.

1.4 Polarization Maintaining Fiber (PMF)

Polarization Maintaining Fiber (PMF) is a special type of single mode
fiber, designed to transmit only one polarization of the input light. It has a high
birefringence with predetermined slow and fast axes while conventional single
mode fibers are design to carry randomly polarized light [5,19].

It is a great interest for many applications in fiber lasers, non-linear optics,
coherent optical communication systems fiber-optic sensing systems and
telecommunications[20].

Polarization Maintaining Fibers (PMFs) have subdivision as shown below:

1.4.1 Panda Polarization Maintaining Fiber

This type of polarization maintaining fiber using round and symmetrical
stress rods on either side of the core[21]. In which design two stress applying
part to create symmetric birefringence to maintain the polarization of lunched
light as shown in figure (1.1a). Typical Panda fiber has the polarization
maintain performance of 23 dB extinction ratio (ER) and beat length is 6 mm.
Extinction ratio and beat length are parameters that used to evaluate
polarization-maintaining property of conventional single mode fiber-
polarization maintaining fiber, SM-PMFs [10,22]. Originally developed for the
telecommunication industry , PMFs including Panda types filled the need for
low cost , high volume , high reproducibility of fiber[23].



1.4.2 Elliptical-clad Polarization Maintaining Fiber

In which born glass silica in elliptical shape around the fiber core to
create asymmetric stress, these stress on the core leads to create birefringence as
shown in figure (1.1b) , from this type ER is 30 dB and beat length is 2 mm
[24]. Compared to panda and bow-tie types , elliptical-clad has higher
polarization maintaining property [19].
1.4.3 Bow-tie Polarization Maintaining Fiber

In which two opposing wings designed to create more birefringence than
any other stressed design. ER of 25 dB and beat length of 6.3mm is reported
from this type[25,26]. Those properties are said to be similar to the panda type
[19]. As shown in figure (1.1,c).

Stressed part

A
| Fast Axis

Figure (1.1): (a) Schematic of PM Panda fiber, (b) Schematic of PM
Elliptical-clad fiber, (c) Schematic of PM Bow-tie fiber [19].

1.5 Application of Polarization Maintaining Fiber

Polarization maintaining fibers are used for special applications such as in
interferometry, fiber optic sensing and quantum key distribution[27]. There are
also commonly used in telecommunications for the connection between a laser

source and a modulator , since the modulator requires polarized light as input.



They are rarely used for long-distance transmission, because PMF is expensive
and has higher attenuation than single mode fiber[28].

1.6 The Degradation of Signals in Optical Fiber

The main reason for degradation of optical signals after propagated are
described in the block diagram which is shown in figure (1.2)[29].

Figure (1.2): The block diagram shows the reason of degradation of optical

signals.



1.6.1 Transmission loss (attenuation)

For any communication system, the most important factor is the losses of
the optical signals that are transmitted through the optical fiber. For fused
silica, which it is wavelength is around 1550 nm, the minimum loss is slightly
less than 0.2 dB/km[30,31]. as it is shown in figure (1.3). This limit is
Important, since it sets the spacing of amplifier in communications systems, and
thus is a major cost of a transmission system[32].

5
Minimum Loss
at 1550 nm
’é‘“ 4 + 1st W ater Peak
= Window
[wit
T 3¢
c
2
® 27
g Operating
b T “Bands”
E 17
‘t Secondary
WaterPeaks-—-—-""""'_'_'——r'
| | I | |

700 800 800 1000 1100 1200 1300 1400 1500 1800 1700

Figure (1.3): Attenuation spectrum of optical fiber [33].

So that the attenuation or the loss (o) represent energy loss during the

transmission of the data in the fiber and it can be defined as below [33]:

Loss (a) = —10 logi—‘_’ (1.1)
Where:
p; Is the input power.
P, I the transmitted (output) power.

Attenuation may be divided into two kinds: Intrinsic and Extrinsic losses

[34,35] ,as which are presented in the block diagram as shown in figure (1.4).



Figure (1.4): The block diagram of the attenuation losses.



1.6.2 Dispersion

In the field of optical waveguides, dispersion is a general term referring
to all phenomena causing these pulses to spread while propagating, and they
ultimately overlap and light pulses could not be distinguished by the receiver

[36]. There are essentially three causes of dispersion.

1.6.2.1 Chromatic Dispersion

Chromatic dispersion is an important phenomenon in the propagation of
short pulses in optical fibers[36]. It is caused by delay differences among the
group Vvelocities of the different wavelengths composing the source
spectrum[37]. The consequence of the chromatic dispersion is a broadening in
the transmission of the impulses.

Chromatic dispersion is essentially due to two contributions. material
dispersion and waveguide dispersion[38]. Material dispersion (Dy) occurs as
the refractive index changes the optical frequency, as shown in figure (1.5)[37].
Generally the dominant contribution, except for the wavelength region in which
it vanishes (for silica based material this happens around 1300nm).The
waveguide dispersion(Dy,) depends on the dispersive properties of the
waveguide itself [38]. From a practical point of view, it is significant property
that the dispersion of waveguide has opposite signs with respect to the material

dispersion in the wavelength range over 1300 nm[37,39].

Ideal Pure Chromatic
T Light Wave Dispersion

Figure(1.5): Chromatic dispersion[37].



1.6.2.2 Intermodal Dispersion

Intermodal dispersion is spreading of light, intermodal dispersion is that
type of dispersion that results from the varying modal path lengths in the
fiber[39]. It is occur in multimode fiber as a results from the propagation delay
differences between modes, this occurs because rays follow various paths
through the fiber and Consequently, at different times, reach the other end of
the fiber[40]. Thus different rays take a shorter or longer time to travel the
length of the fiber. The ray that goes straight down the center of the core
without reflecting, arrives at the other end first, other rays arrive later. Thus
light entering the fiber at the same time exit the other end at different times. The

light has spread out in time[39,41].

1.6.2.3 Polarization Mode Dispersion

Polarization refers to the electric-field orientation of a light signal, which
can vary significantly along the fiber's length[42]. Signal energy at a given
wavelength occupies two orthogonal polarization modes, as shown in figure
(1.6)[43]. A varying birefringence along its length will cause each polarization
mode to travel at a slightly different velocity and the polarization orientation
will rotate with distance. The resulting different in propagation modes will
result in pulse spreading that called Polarization Mode Dispersion (PMD)[42].
Polarization mode dispersion is related to the differential group delay, the time
difference in the group delays between two orthogonal polarized modes, which
causes pulse spreading in digital systems and distortions in analogue systems.
The polarization mode dispersion value is the average of the differential group
delay values. While the individual values can shift from one time to another the

overall distribution, hence the average is assumed to be fixed[44,45].
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Polarization Mode Dispersion

—
Optical Pulse » - -
A——

4>

Differential Group Delay

Figure (1.6): Variation in polarization states of an optical pulse at it

passes through a fiber [43].

1.7 In Line Fiber Interferometers

Interferometry is based on two or more light beams superimposed to
measure the phase difference between them. Interferometer uses two light
beams with the same frequency[46].

Typically an incident light beam of interferometer is divided into two or
more parts and then recombined together to create an interference pattern[47].
For the optical path difference between the two paths, the integer number of
wavelength corresponds to constructive points and odd number of half
wavelengths corresponds to destructive points of the interference pattern[46,47].
So in the output optical spectrum of the optical fiber interferometer, the position
of minimum can be shifted to maximum position if the optical path difference
varies by odd number of half wavelengths. At least two optical paths are
necessary for an interfererometery experiment[48]. These optical paths can be in
one optical fiber with two or more different optical fiber modes. Each of modes
defines one optical path for the interferometer such as the Sagnac interferometer
where the optical paths are defined by the clockwise and counter clockwise
modes. There are many types of interferometers configurations , to see the
principle of their operation, the detail of some interferometers such as Fabry-

perot, Sagnac, Michelson and Mach-zehnder interferometers[49,50].
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1.7.1 In Line Fabry-Perot Interferometer

A Fabry-Perot interferometer (FPI) consists of two optically parallel
reflectors with reflectance Rland R2 separated by a cavity of length L[51].
Reflectors can be interface of two dielectrics mirrors, or two fiber Bragg coating
cleaved end of the optical fiber [46,52]. Figure (1.7) shows the schematic of

Fabry-Perot interferometer.

Output
Input
—_—
—
+— L —

“””:u i: i

”."i“" i
FBG1or FBG 2 or
Reflector 1 Reflector 2

Figure(1.7): Fabry-Perot interferometer[52].

Fabry-Perot interferometer can be largely classified into two categories:
one is extrinsic and the other is intrinsic

The extrinsic fabry-perot interferometer (EFPI) uses the reflections from
an external cavity formed out of the interesting fiber [53]. Figure (1.8a)
shows an extrinsic FPI sensor, in which the air cavity is formed by a
supporting structure. Since it can utilize high reflecting mirrors, the
extrinsic structure is useful to obtain a high finesse interference
signal[54]. Furthermore, the fabrication is relatively simple and does not
need any high cost equipment. However, extrinsic FPI have
disadvantages of careful alignment, low coupling efficiency, and
packaging problem[55].
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The intrinsic fabry-perot interferometer (IFPI) fiber sensors have
reflecting components within the fiber itself. For example, when the
reflectors are formed within a fiber by any means, as in figure (1.8b), it
can have the intrinsic FP interference[56,57]. The local cavity of the
intrinsic FPI can be formed by a lot of methods such as micro machining

fiber Bragg gratings (FBGs), chemical etching, and thin film deposition

[58].
R, R,
| |
Al
Fiber : : Fiber > :
— ——
(1) (b)

Figure (1.8): FPI (a) extrinsic (b) intrinsic [53].
1.7.2 In Line Sagnac Interferometer

The configuration of a Sagnac optical fiber interferometer is illustrated
by figure(1.9). The optical source is a single mode stabilized coherent semi -
conductor or erbium doped optical fiber laser[51,46]. The laser output beam is
assumed to be well collimated with uniform phase[59,60]. The laser beam
enters the lossless 3dB fiber coupler (FC). At the FC the injected light splits into
two parts with equal intensity that each of them travels around single mode
optical fiber coil in opposite directions. The output of Sagnac coil is guided

toward a single detector[61].
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Figure(1.9): A schematic diagram of Sagnac fiber interferometer[61].

1.7.3 In Line Michelson interferometer

A schematic of conventional Michelson optical fiber interferometer is
depicted in figure (1.10)[62]. The high coherent light beam is split into two
different optical paths in the upper and lower single mode optical fibers by the 2
x 2 optical coupler (OC). The light reflected back by mirrors M1 and M2 are

recombined by the OC to produce interference pattern at the receiver[63].

Output
Mirror 2

Input

Figure (1.10): A schematic configuration of Michelson interferometer[62].



14

1.7.4 In Line Mach-Zehnder Interferometer (MZI)

Mach-Zehnder interferometers have been commonly used in diverse
sensing applications because of their flexible configurations[64]. Early MZIs
had two independent arms, which are the reference arm and the sensing arm, as
illustrated in figure (1.11).

An incident light is split into two arms by a fiber coupler and then recombined
by another fiber coupler[65]. The recombined light has the interference
component according to the optical path difference between the two arms. For
sensing applications, the reference arm is kept isolated from external variation
and only the sensing arm is exposed to the variation. Then, the variation in the
sensing arm induced by such as temperature, strain, force and RI changes the
optical path difference of the MZI, which can be easily detected by analyzing
the variation in the interference signal [66,67]. In this experimental Mach-

Zehnder interferometer was formed.

Figure (1.11): A Schematic of optical fiber Mach-Zehnder
interferometer[66].
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1.8 Fabrication Micro-cavity Interferometers

The micro-cavities implanted within the core can take either spherical or
ellipsoidal shape. Figure (1.12) shows an example of a micro-cavity formed at
splice joint with different shapes[68]. In this experiment, ellipsoidal shape is
formed, according to this shape, it has a size of (2dx2r) with a rotation around
the major axis of the coordinate system. Where the 2d and r are the polar

diameters and radius, respectively[69].

Figure (1.12): Micro -cavities produced by control a fusion splicer

parameters [68].

A Mach-Zehnder micro-cavity was fabricated by using a Fujikura (FSM-
60S) fusion splicer. Figure (1.13) shows the micro cavity that formed by
splicing the single mode fiber on the left with Polarization maintaining fiber on
the right[70].The micro-cavity forms an ellipsoid at the splice joint, with the
longest axis perpendicular to the axis of the fiber. The PMF air moved to the
splice joint because of collapsing which have more force to displace silica of the
fibers at the interface between the SMF and PMF[71]. The silica resists
displacement, with the resistance weaker along the interface of the splice joint.
The excess air moves along this interface, producing an ellipsoidal micro-
cavity[72].
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SMF Micro Cavity PME

Two Panda Stress
Members

Figure (1.13): Schematic diagram of a PMF to SMF splice to construct the
micro- cavity.
The splicing parameters were used to produce ellipsoidal micro-cavity
was [68,69]:

Perfusion arc power

The perfusion arc power is used to clean the fiber ends of dirt during
splicing. It's a value required to vaporize any dirt residing on the optical fiber
end faces.

Perfusion time

The perfusion time refers to the time of the perfusion arc power which
needs to be short to avoid unduly heating the optical fiber ends.

Arc power

Arc power is used to heat the fiber ends so they can be melted together.
The arc power reduces the viscosity of the silica during splice formation which

affected on the shape of the micro-cavity.

Overlap

The overlap refers to the length of the region of the fibers forced to
overlap each other. It's used Sum overlap during the construction of the micro-

cavity and this is much shorter than the normal 15pum. Using a shorter overlap
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weakens the interface of the PMF to SMF which reduces the resistance against
air displacing the silica along the interface and resulting in more ellipsoid
micro-cavities [70,72].

These parameters affected on the shape and size of the micro-cavity. The arc
power was found to change the shape of the micro-cavity, and increasing the arc
power during the splice, produced more spherical micro-cavities [73].The main
arc power heats the fiber to allow the two cleaved fiber ends to adhere to each
other. Heating silica reduces its viscosity, and reduces the resistance against air
escaping the hole collapse displacing the silica[74]. The silica was hotter due to
the greater arc power, and was more easily displaced by air to form a more

spherical micro-cavity.

1.9 Fiber Pulse Compression

It is a process that used the optical fiber for reducing the durations of
optical pulses by linear or nonlinear techniques[75]. Pulse compression is used
in various applications such as for high resolution in spectroscopy applications,
high data rate for communication applications and more effective pulses in
medical application[76]. In general, pulse compression in optical media is
classified into two types: linear pulse compression and nonlinear pulse

compression as shown in subsections below :

1.9.1 Fiber linear Pulse Compression

The techniques of linear pulse compression are purely based on the
chromatic dispersion of fibers[77]. They are applied to pulses that are initially
chirped, not bandwidth limited. A reduction of pulse duration results from the
removal of the chirp, whereas the pulse bandwidth remains more or less

unchanged. Normal chromatic dispersion can compensate a down-chirp,
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whereas anomalous dispersion may remove an up-chirp, but note that higher-

order dispersion may also have to be considered [78].

1.9.2 Fiber Nonlinear Pulse Compression

Nonlinear pulse compression techniques are often used , where typically
the Kerr nonlinearity is used for increasing the spectral width, and a suitable
amount of chromatic dispersion (inside or outside the nonlinear device) removes

the pulse chirp, minimizing the pulse duration[79].

1.10 Optical Fiber Communication Budgets

In the optical communication system, fiber patch cables and optical
transceivers need to complete the optical signal path, enabling data to be
transmitted between devices. In order to ensure that the fiber system has
sufficient power for proper operation, it is vital to calculate the power budget of
the span[80].

1.10.1 Optical Power Budget

Power budget refers to the amount of loss that can be tolerated by a data
link while maintaining proper operation[80]. In other words, the amount of
optical power available for a successful signal transmission over an optical fiber
distance as shown in figure (1.14). Calculations should always assume the
worst-case values in order to ensure that there is sufficient power available for
the link, which means that the actual value will always be higher than that. The
optical power budget is measured by dB, which can be calculated as shown in
equation below[80,81]:

P.(dB) = P (dBm) — P (ABm) ..., 1.2)
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where
P1x: the minimum transmitter power.

Pxx: the minimum receiver power..

Power Budget

Connectors Splice

Transmitter I—E——1 - Receiver

¢ Fiber v

Figure(1.14): Optical power budget graph[81].

When calculating the performing of power budget, there is a long list of
items to account for. In this subsection some of basic items that determine the

overall performance of the transmission system are listed[80,81].

1.10.1.1 Fiber Loss
Fiber loss has a significant impact on the overall system performance,
which is expressed by dB per kilometer. The total fiber loss is calculated based

of the distance multiplied by loss factor[82].

1.10.1.2 Connector loss

Loss of a matched pair of connectors. Multimode connectors will
typically have losses of 0.2-0.5 dB. Single-mode connectors that are factor
made and fused will have losses of 0.1-0.2 dB. Field terminated single-mode

connectors may have losses of up to 0.5-1.0 dB[83].
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1.10.1.3 Splicing Loss

Splicing Loss is an important factor for optical fiber technology.
Mechanical splice loss is generally between 0.7 and 1.5 dB per connector.
Fusion splice loss ranges from 0.1 to 0.5 dB per splice. Due to their limited loss
factor, fusion splices are preferred[84].
Table(1.1): compares general important factors between the fiber connectors

and splices.
Table (1.1): Connectors versus Splices[85].
Connectors Splices
Provide temporary connections Provide permanent connections
Higher loss Lower loss
Larger sizes Smaller sizes
Immune, or not immune, to Immune to environmental effects

environmental
effects (depends on the connector

type)
It takes a long time to build a It takes a very short time to build a
connector splice
Diverse applications Connection between a pair of fiber
cables
Many types Few types
New technology reduces Conventional technology keeps the
installation time same installation time
Building reasonable mechanical Building better mechanical
stability at

the connection points stability at the connection points
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1.10.2 Bandwidth Budget

Bandwidth is measured as the amount of data that can be transferred from
one point to another within a network in a specific amount of time. Typically,
bandwidth is expressed as a bitrate and measured in bits per second (bps). There
are several different ways to measure bandwidth[86]. Some measurements are
used to calculate current data flow, while others measure maximum flow,
typical flow, or what is considered to be good flow. Bandwidth is also a key
concept in several other technological fields. In signal processing, for example,
it is used to describe the difference between the upper and lower frequencies in
a transmission such as a radio signal and is typically measured in hertz
(Hz)[87].

1.11 Compression Factor (Fc)

The narrower pulse in the time domain has the broader spectrum in the
spatial domain [1,88]. Therefore the figure of merit of this study is characterized
by the compression factor. The compression factor is a good indication for
obtaining a narrow laser pulse with different technique of compression. This
factor is explained by the relation between input and output pulses for the

system of compression as shown in equation bellow [88,89].

_ FWHMi/p _ ApwHM-i/p- (1.3)

FWHMo/p  AApwHM-o0/p—

Fc

where
FWHM (i/p) is the full width half maximum of input pulse of the system.
FWHM (o/p) is the full width half maximum of output pulse of the system.

Temporal FWHM can be obtained from the spatial FWHM using the equation
(1.4). [11,89]:



(Ac)?

FWHM (emporal) = —rwanr (spatial)

(1.4)

where:

A¢ central wavelength in nm.

¢ speed of light in vacuum.

1.12 Literature survey.
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1.

P. Colman et al., (2010)[90].

Technique used /Decreasing Energy for pulse that inject in solid core
PCF.

Wavelength (1.555 ) nm.

Input pulse width 3 ps.

Output pulse width 580 fs.

Compression factor 5.17.

Theoretical WOI’Vk.

. M.Y.Chenetal.,(2011)[91].

Technique used:( Compression by using highly anomalous
dispersive PCF).

Wavelength (1554 nm) nm.

Input pulse width 2898 fs.

Output pulse width 630 fs.

Compression factor 4.6.

Experimental work.

Photonic crystal fiber
COMRISSSOr

High power uiitra - Autocorrelator
short pulse laser N S—
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3. N. G. Baquedano et al. , (2012)[92].

Technique used: (Tunning the cross section of HCPCF).
Wavelength used 800 nm.

Input pulse width 5 ps.

Output pulse width 1.56 ps.

Compression factor experimentally 3.2.

Experimental and theoretical works.

o

FWHM (ps)

20

9]

Length (m)

Fig. 5. Full width at half maximum (a). FWHM. and compression
factor (b) as a function of the propagation length of a pulse and for
different tapering factors.

S. Olupitan etal., (2013)[93].
Technique used / Robustness of chloroform-filled the solid core PCF.

Wavelength 850 nm .
Input pulse width 2 ps .
Output pulse width 0.8 ps.
Compression factor 2.5.

Theoretical work.
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5. L. Cherbiaetal. ,(2013)[94].
e Technique used: high level of energy and generating different orders of
solitons without resorting tolarge values of fiber’sdispersion.
e Wavelength used 1065 nm.
e Input pulse width 28 fs.
e Qutput pulse width 1.8 ps.
e Compression factor 15.5.
e Theoretical work.
1a]: — = .
Il o |
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| © ] — B
7
6. S.V.Smirnov et al. (2015)[95].

Technique used: (Step-Index Large Mode Area Fiber (LMA)).
Wavelength used 1560 nm.

Input pulse width 5 ps.

Output pulse width 3.2 ps.

Compression factor 1.56.

Experimental work.
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7. S. O. Atuba et al., (2016)[96].

e Technique used: (tapering solid core PCF).
e Wavelength 1550 nm.

e Input pulse width 0.8 ps.

e Output pulse width 0.15 ps.

e Compression factor 5.3.

e Theoretical work.

Intensity(a=us)

8. X.Feng etal., (2018)[97].
Technique used: Tapering PCF through self-similar.

e Wavelength used 2.5 um.

e Input pulse width 1 ps.

e OQutput pulse width 62.16 fs.
e Compression factor 16.09.

e Theoretical work.

Intensity (a.u.)

k — S 0
232425 26 27

w0 o
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9. Y. G. Jeong et al.,(2019)[98].

Technique used: a single argon-filled HCF and chirped mirrors.
e Wavelength used 1030 nm.
e Input pulse width 170 fs.
e Output pulse width 5.1 fs.
e Compression factor 33.

e Experimental work.

10. M. Rehan et al. ,(2019)[99].

e Technique used: a Large Mode Area Tapered Fiber.
e Wavelength. 1.55 um

e Input pulse width. 250 fs.

e Output pulse width 46 fs.

e Compression factor 5.4

e Theoretical work.
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11. A. A. Dawood et al., (2019)[100].

Technique used: (HC-PCF) are used for high power beam delivery and
can deliver ultra-short or compressed pulses at 1550 nm.
Wavelength used 1550 nm.

Input pulse width 10 ns.
Output pulse width 6 ns.
Compression factor 1.36.

Experimental work.

THOR Wednesday, 17 July 2019 22:30:37

12.

E. Vicentini et al. (2020)[101].
Technique used: nonlinear compression of pulse by using two cascaded

all-solid-state multi-pass cells.
Wavelength used 1.03 um.
Input pulse width 460fs.
Output pulse width 22fs.
Compression factor 20.

Experimental work.
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Table (1.2): Compare experimental results of literature survey and this
thesis.
Table (3.10): compare experimental results of literature survey and this
thesis.

2010 Theoretical work

2012 Experimental work

2013 Theoretical work

7 53 2016 Theoretical work
9 33 2019 Theoretical work

2019 Experimental work

This 1.10 2021 Experimental work
Thesis
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CHAPTER TWO

Experimental Setups and Procedures of the Works

2.1 Introduction

In this chapter, pulse compression would be constructed using single and
cascaded PM-Mach-Zehnder Interferometers. The modal distribution of this
Interferomter had been characterized using Comsol multi-physics (version 5.5).
In the simulation and the experimental works of modals distribution via this in
line interferometer , the tunability was done after applying mechanical forces on
the micro splicing region and the PM fibers cross sectional area. The details of
the thesis is illustrated in Figure (2.1).

Design and construct funable in line PM MZI for pulse compression

Single PM-Mach Zehnder Cascaded PM-Mach Zehnder
Simmulation Experj_men]al E:i:.p-eri.lnental

! l l

Tunable Done By Applving Mechanical Forces

I
| !

Micro Cavity Splicing Fegions Fibers Cross Sectional Area

l !

Visunahzing and Measuring the Output Spectra

[ l ! |

FWHM (:patially) FWHM (temperally) P peak e

Figure (2.1): Flow chart of the work’s steps.
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2.2 Simulation Work
2.2.1 Single PM-Mach-Zehnder Interferometer (PM-MZI)

COMSOL multi-physics version 5.5 software was used to provide a clear
vision about how optical signals propagate along optical fibers and affected by
the outer environment changings, and to simulate the PM-MZI of this
experiment , as shown in the following figure(2.2).

The material refractive index of each core and clad of SMF and PMF was

selected according to standard fibers data sheet and previous studies [102,103]
the effective index resulted by fusion and splicing was calculated using the
general form of effective index formula "the ng is defined as the average of the
refractive indices of the constituents™ [104-108].
To simulate the effect of external induced force on PMF and splicing region,
equations below used to find the elongation of fiber at each force separately.
Young’s modulus is the modulus of elasticity ranges from 66 Gpa to 74 Gpa
for the SiO, [109-111].

stress

young modulus =

Strain
Strain = AL—L
stress=F /A
Where:
L isthe original length.
AL is the change in length .
F is the applied force in (N).

A s the cross sectional area in (m?).

The cross sectional area of optical fiber has 125um cladding is equal to:

(62.5e-6)? xn =1.227e-8 m*

(2.1)
(2.2)

(2.3)
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Splicing Regions

-100 -50 0 50 100 150 200 250 300

SMF BMF SMF

Figure (2.2) Geometrical simulation build-up of PM-MZI using Comsol
software.

2.3 The Experimental Work Components and Equipment's

The used components and equipment's in the experimental work will present in

the following subsections.

2.3.1 The Optical pulse Laser Source

The spectrum of the pulse Laser source is shown in Figure (2.3).The
pulse laser having specific parameters illustrated in Table (2.1) and more

detailed in datasheet shown in [ appendix A].



Table (2.1): Parameters for pulse laser source.

Parameter Value
Central wavelength 1546.74
FWHM Temporal 10
FWHM spatial 286

Pulse repetition rate 30
Duty-cycle 90%
Energy 0.0123
Power 1.229
Voltage 2

32

Unit

nm

ns

pm

kHz

nJ

mwW
mV

Saturday, 06 April 2019 01:08:03

Figure (2.3) : The pulse laser source spectra line.
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2.3.2 In-Line PM-MZ Interferometer

This interferometer constructed using two different types of optical
fiber in terms of number of the guided mode, which effect on the ratio of core's
power to cladding's power, these fibers are demonstrated as follows in term of
their cross sectional areas , refractive index and length.

This interferometer was building using two types of fibers, these fibers are

explained in subsections below.

2.3.2.1 Single Mode Fiber (SMF)

Single mode optical fiber made from corning company with modal 28
for coupling laser to interferometer and spliced with polarization maintaining
fiber to perform fiber interferometer. The optical specifications of SMF are
presented in table (2.2), [see appendix B]. Figure (2.4) shows the side view for

the SMF fiber under microscope.

Figure (2.4): Side view for the SMF fiber under microscope.
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Table (2.2): Optical specification of SMF.

Parameters Value Unit
Operating wavelength 1550 nm
Core diameter 8.2-10 um
Cladding diameter 125+ 2 pum
Mode-Field Diameter (MFD) @1310nm 9.2+ 04 pwm

@1550 nm 10.4 £ 0.5

@1550nm < 18.0

i i s/(nm*km
Dispersion @16250m < 22.0 [(ps/( )l

2.3.2.2 Polarization Maintaining Fiber

PANDA-PM(P3-1550PM-FC-10, from THORLABS) specialty fibers are
designed to maintain properties with the best polarization, the fibers offer low
attenuation and outstanding birefringence. Available in a wide range of standard
operating wavelengths, with a variety of coating designs and up to 1550 nm. For
high performance polarization retaining fiber applications, PANDA PM
specialty fibers are optimal. This field-proven fiber supports applications of
high growth, and performs well over a broad range of temperatures. The optical
specifications of PMF are presented in table (2.3) [Appendix C]. Figure (2.5)

shows the Schematic and cross sectional of PM-PANDA.
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Fast Axis

PANDA
Stress Member

Dual Acrylate
Coating

(Not to Scale)

Figure (2.5): (a) Schematic of PANDA-PM Fiber, (b) PANDA-PM Fiber

Cross Section.

Table (2.3): Optical Specification (PMF).

Parameters Specifications Test data

Alignment Wavelength 1550nm

Fiber Operating wavelength
1440-1625nm
Rang

Cutoff Wavelength 1370 £ 70 nm

Min. Extinction Ratio
(Port A/Port B)

23dB 23dB/23dB



Max. Insertion Loss
(Port A /Port B)

Typical Optical Return Loss

(Port A/ Port B)

Mode Field Diameter

Connector Type

Key Width

Key Alignment

Fiber Type

Fiber Length

Jacket Type

Max Power

Operating Temperature

Storage Temperature

36

0.5dB 0.11dB/0.24dB
60 dB
9.9 + 0.5 um @1550nm
FC/APC

2.0mm(Narrow)

Slow Axis

PM1550-XP

10.0m

FT030-BLUE

300mwW

0To70°C

-45T085 C
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2.3.3 Mechanical Weights
The Force is physical effect applied on the PMF to insure the

compression for the pulse which propagated through the polarization
maintaining fiber . The force effect applying vertically on the PMF. It's consists
of different dimensions of bases from aluminum. The big ground base
dimensions are (27x27x1.5) cm, the pieces over the big ground base are
considered as bracketed tool. It consisted of two pieces of polished carbon steel
or aluminum with dimensions (5.5x3x1.5) cm. Even is appropriate to
dimensions of the used bare the PMF. The purpose of it is to press the bear of
the PMF. After pressing, the physical properties of PMF will be changed. The
results of press processing indicate the changes the pulse duration of the light
that propagate through PMF and knowing the weight amount which has placed
on a bare of PMF. The dimensions of upper base of the diagram are
(19x19x0.5) cm. It works as a balance where weights placed on it. This design
involves reset process for parts of the system over a bracketed tool. The purpose
of reset process is to ensure the weights is zero on the PMF without exciting of
additional weights. After reset process, when additional weights are applying on
the balance it will be calculated precisely.

The weights that used in these experiments are (5,10,20,50,100)g that
are applied at the interferometer cavity's regions and fibers cross sectional area
to perform the elongation in the interferometer length ,tunability in the fiber
interferometer. Figure(2.6) shows the image of forces positioning instrument

and different weights.
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() (b)

Figure (2.6) : Mechanical forces (a) Image of Forces positioning

instrument and (b) Different weights.

2.3.4 Optically Visualizers

The optical signal was visualized by optical spectrum analyzer (OSA202)
made by THORLABS. An optical spectrum analyzer is a device was designed
to measure and display the power distribution of an optical source over the
specified wavelength rang [Appendix D]. The characteristics of this device

shown in table below.

Table (2.4): The characteristics of (OSA 202).

Parameters Value Unit
Wavelength range 600 - 1700 nm
High wavelength accuracy +0.01 nm
High wavelength resolution 0.02 nm

Wide level range +20 t0 -90 dBm

Fast measurement 0.2 sec.(100nm span).
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2.4 Procedures of Constructing Interferometers

There are many steps have been achieved for constructing these interferometers

as follows:
2.4.1 Optical Fibers Stripping

The first step, stripping define as remove the protective polymer coating
using mechanical or thermal effect which allows access to the glass fiber. It is
Important since it can damage the optical fiber and weaken its long term
mechanical reliability. The conventional optical fiber stripping tools (JIC — 375

Tri — Hole), used in this experiments to remove any protective coating.
2.4.2 Optical Fiber Cleaver

The second step is cleaving the optical fibers by the cleaver machine (CT-
30) which shown in figure (2.7). The fibers cleaved to produce end faces.
The fiber ends are aligned with each other and the fire tips heated to their
softening point, so when they are pressed together they form a joint. The fiber
end faces are required for the minimum deformation when the end faces are
brought together. Flat in this case means no notches or bumps in the fiber’s end
face greater than a few percent from the surface. Optical fiber cleaved by
placing it under sufficiently high tensile stress, around a sufficiently large
surface crack. This crack then propagates across the fiber cross section until the
fracture crosses to encompass the whole fiber cross section, and the fiber is
detached into two parts. Cleaving may be a violent and difficult to control
process, and cleavers will periodically produce defective cleaves. Finally; to
ensure the edges of the fiber are well-cleaved, it must be examined under a
microscope and in case that the fiber tip is not smoothly cleaved then the fiber

must re-cleaved.
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Figure (2.7): Fiber cleaver (CT-30).
2.4.3 PMF and SMF Fusion Splicing

The third step is fusion splicing define as the process by which a
permanent low loss, high strength, welded joint formed between two optical
fibers. In this work, (DVP-740) splicing machine, shown in figure (2.8) was
used to fusion splice PMF and SMF.

S, 2F %5 4= P

FUSION SPLICER

Figure (2.8): Optical fiber arc fusion splicer type (DVP-740).

Fusion splicer is the device that splices the fibers, needs to position the

end faces closed to each other. The two fibers were held in chucks or v-grooves
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that could move the fiber ends with four degrees of motion: x, y, z and 8. The
splicing region must be strong enough as the original fiber, therefore, when the
light passed through fiber, will not be scattered. The source for this process can
be getting from electric arc. The softening point for the conventional single
mode fiber is different for PMF due to the microstructure of PMF. The surface
tension in softening point will overcome the viscosity and make the PMF’s
collapsing in the air hole. So, the splice process will be done by trial and error
by changing arc power and arc time. Figure (2.9) give an example of fibers
experiences the arc fusion process:

(a) Fibers have experienced perfusion.
(b) Fibers have been softened and brought together.

(c) The fibers finally formed the splice.

Figure (2.9): Fusion splicer process between two SMF and PMF .

The optimum parameters of the fusion splicing (DVP-740) have been
selected to splice PMF to SMF to get accurate measurement of the splice loses

was summarized in Table (2.5).



Table (2.5): parameters of fusion splice SMF and

Work type
Arc Time

Pre Arc Time

Arc Power
Pre Arc Power
Cleave Angle

Gap Position

2.5 Experimental Work

As it was listed in figure (2.1), a simulation study for each part in the
block diagram was carried out followed by an experiment for that part. In the

following sections the details of all the experiments and simulation studies will

present.

Auto

0.1 Sec

0.20 Sec

0.70

0.78

Middle

2.5.1 In-line Mach-Zehnder Interferometers

Two experimental setup were performed using different PMF lengths
8,16 and 24 cm, the first with one Polarization maintaining fiber and two

splicing regions , the second setup with two Polarization maintaining fibers and

four splicing regions.

Two types of In-line MZI have been used in the simulation and experimental

work to design.

42
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2.5.1.1 Single PM-Mach-Zehnder Interferometer (PM-MZI)

The single PM-MZI consists of one PM-MZI which mean two micro
cavity splicing regions MCSRs ,one cavity length Lc ,the mechanical force in g
was varied from (5-100)g applied on the interferometer splicing regions and
also will be applied on the PM fiber cross sectional areas.

Figure (2.10) shows the schematic diagram for experimental setup for the

tunable singe PM-Mach Zehnder interferometer.

a In-Line PM-Mach zehnder
Interferometer
Pulse Laser
Source g

- P\

Mechanical Forces (g) s ; pﬂ J

: s ;

T— 1= -—-)_;,_. —
Vi
SF  MCSR AF MR S\F

\ \ICSRI \ICSR. SMF

Figure (2.10): schematic diagram of (a) PM-MZI pulse compressor,
(b) Single PM-MZI.



44

The in line single PM-Mach-Zehnder interferometer MZI is made of
PMF with three different length 8,16,24 cm sandwiching between two standard
single-mode optical fibers SMF with length 23and 13cm. The cladding modes
are excited by the first up-taper and then enter the PMF section as the
interferometer arm. Finally, both the cladding modes and the core mode are
reconnected to the second up-taper, which forms the Mach-Zehnder

interferometer. The pictures of these experiments are shown in figure (2.11).

Figure (2.11): The experimental setup for In-line Single PM-MZI.
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2.5.1.2 Cascaded PM-Mach-Zehnder Interferometer (PM-MZI)

The cascaded PM-MZI consists of 2 PM-MZI which mean four micro
cavity splicing regions MCSRs ,three cavity length Lc ,the mechanical force in
g was varied from (5-100) g applied on the interferometer splicing regions and
also will be applied on the PM fiber cross sectional areas.

Figure (2.12) shows the schematic diagram for experimental setup for the

tunable cascaded PM-Mach Zehnder interferometer.

a
In-Line PM-Mach zehnder
Interferometer
Pulse Laser
Source
Mochacd Foes ¢

\

Y Y V
OF MR OAF MR OF MU PE MR QE
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Figure (2.12): Schematic diagram of (a) PM-MZI pulse compressor, (b)
cascaded PM-MZI.

The in line cascaded PM-Mach-Zehnder interferometer MZI is made of

two PMF with length 8 cm sandwiching between three standard single-mode
optical fibers SMFs with lengths 23,13 and16cm .
In each splicing region the cladding modes are excited by the first up-taper and
then enter the PMF section as the interferometer arm. Finally, both the cladding
modes and the core mode are reconnected to the second up-taper, which forms
the Mach-Zehnder interferometer. The pictures of these experiments are shown
in figure (2.13).
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Figure (2.13): The experimental setup for In-line Cascaded PM-MZI.
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CHAPTER THREE
Results, Dissection, and Conclusions.

3.1 Introduction

In this chapter, simulation and experimental results for tunable laser
pulse compression using single and cascaded PM-Mach Zehnder
Interferometers will be presented and discussed.

Many affected parameters on the shape and pulse width and peak power after
using PM-MZI are studied. These parameters are number of micro cavity
splicing regions , the changed in the length of PMF's and mechanical force that
applied on the PMF cross section and micro cavity splicing regions.

This chapter can be divided into: simulation and experimental results introduced
In section 3.2. Section 3.3 summarizes the main point concluded from this work

followed by some suggestions for future work in section 3.4.

3.2 Simulation and Experimental Results
In the following sections the simulation and experimental results are

illustrated for single and cascaded PM-Mach-Zender interferometers .

3.2.1 Single PM-Mach Zehnder Interferomter

Different mechanical forces are used to make the tunability in the
designed fiber Interferomter after applying them on the Polarization maintaining
fiber cross sectional area and PM-SMF micro cavity splicing regions.
Subsections below shows the simulation and experimental results for single

PM-Mach Zehnder interferometers.
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3.2.1.1 Simulation Results

Three different lengths of polarization maintaining fibers with (8,16,24)
cm have been studied after splicing them between two single mode fibers SMF
with lengths 23and 13cm. And the influence of different mechanical forces
applied on both cross sectional area and the micro cavity splicing regions of
PM fiber had been recorded.

The mechanical force in this work was made by applying different weights (0,
5, 10, 20, 50, 100) g on the PMF.

The elongation for the cross section of PMF will be reducing of the geometric
parameters of PMF, this change of parameters caused decreased the group
velocity for all modes which propagated through the core and cladding for the
fiber and the reducing in parameters of fiber will be changed on the parameters
of pulse that propagated through the fiber .Table (3.1) shows the elongation of
PMF length after applying different weights and the resulting fiber elongation is

characterized in the in the figures (3.1).

Table(3.1):the elongation of PMF after applied different weights on it.

Weights AL (cm)

g

L=8cm L=16cm L=24cm
0 0 0 0
5 0.0046568 0.00931 0.01397
10 0.009312 0.01862 0.027936
20 0.01864 0.03728 0.05592
50 0.046568 0.09314 0.139704

100 0.093 0.1862256 0.2794
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Figure (3.1): PM-Fiber Elongation as a Result of Applied Force Variation.

The boundary mode analysis results of single PM-Mach Zehnder interferometer
variation with force are shown in figures (3.2), (3.3) and (3.4) respectively.
Since The narrower pulse in time domain can be gained from the wider pulse in
spectral domain then the best compressed pulse in this study is a gained from
the highest propagation order mode. By observing following figure can see that
the higher excitation of higher order modes came from the 8cm PMF after
applying 5 g on the cross sectional areas of the fiber and in case of 16 cm PMF
after applying two equally 10,20 g on the micro cavity splicing regions .
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Figure (3.2 a-l): The simulation results of boundary mode analysis that

demonstrate the mode distribution in single PMF-MZI with 8 cm PM fiber

length when different weight are applied PM fiber cross sectional area and

also SMF-PMF micro cavity splicing regions.
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Figure (3.3 a-l): The simulation results of boundary mode analysis that
demonstrate the mode distribution in single PMF-MZI with 16 cm PM

fiber length when different weight are applied PM fiber cross sectional

area and also SMF-PMF micro cavity splicing regions.
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Figure (3.4 a-l): The simulation results of boundary mode analysis that

demonstrate the mode distribution in single PMF-MZI with 24 cm PM

fiber length when different weight are applied PM fiber cross sectional

area and also SMF-PMF micro cavity splicing regions.
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3.2.1.2 Experimental Results
Single PM-Mach Zehnder interferomter with length (8cm)
The output spectrum for the single PM-Mach-Zehnder interferometer
was Vvisualized by using optical spectrum analyzer, after applying different
mechanical forces, weights in g, on the PM fiber cross sectional areas and PM

fiber splicing regions as shown in figure(3.5).
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Figure (3.5) : The spectrum of the single PM-Mach Zehnder Interferomter
after applying different weights on the PMF in case of single PM-MZI with

PM length 8cm (a)cross sectional areas (b)micro cavity splicing regions.

Table (3.2) lists the values of the shift in the central wavelength, the
FWHM (spatiaity) » FWHM  (temporaity) ;OUtpUt optical power and compression factor
for single PM-Mach-Zehnder interferometer after applying different weights on
the cross sectional areas of PM fiber and micro cavity splicing regions. The
values of the central wavelength , FWHM spaiany) and the peak power were
visualized by using optical spectrum analyzer and the values of, FWHM

(Temporally) Was calculated according to equations(1.4).
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Table(3.2):The effect of different weights on the central wavelength, FWHM spagiaity ), FWHM (temporaity),0utput optical power

and compression factor for Single PM-MZI cross sectional areas and micro cavity splicing regions with PMF length (8cm).

Weights

(@)

10
20
50

100

(nm)

Cross  Splicing
section  regions
1547.103 | 1547.103
1547.076 =~ 1547.078
1547.089 | 1547.085
1547.090 1547.094
1547.096 | 1547.089

1547.096

1547.097

FWHM spatial

Cross

section

130.866

206.046

171.161

161.271

153.484

147.731

Splicing

regions
130.866
198.610
192.092
153.635
164.923

141.666

FWHM

(temperoal)

Cross

section

0.060966

0.038720

0.046612

0.046582

0.051981

0.054005

Splicing

regions
0.060966
0.040170
0.041533
0.051930
0.048375

0.056318

Peak power
(PW)

Cross Splicing
section regions
467.288 467.288
412.719 417.170
444.438 405.451
458.273 437.320
390.686 414.069
375.367 451.692

Co

mpression

Factors

Cross = Splicing

section  regions

2.18

1.38

1.67

1.77

1.86

1.93

2.18

1.44

1.48

1.86

1.73

2.01
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From tables (3.2), we can see the spatial FWHM for the pulses after
propagated via (PMF with length 8cm) changed in different values after
applying different weights, fig (3.6a) shows these changed in the FWHM for the
pulses. The applying force on the PMF to achieve the exponentially decreasing

dispersion and exponentially increasing nonlinearity profiles

a 240 -
220 - ==0==Cross section
200 -
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100

0 5 10 20 50 100
Weights(g)

The compression factor is a good indication for obtaining a compressed
pulse of the laser source. By using equation (1.3) the best compression factor
obtained were (1.38,1.44) for PMF with length 8cm after applying (5) g on the
cross sectional area and micro cavity splicing regions respectively. Fig (3.6b)
shows the relation between compression factor and the weights which applying

on the cross section area and micro cavity splicing regions.
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Figure (3.6): The relation between the different weights applying on the
cross section area and micro cavity splicing regions of PM fibers
(d)FWHM and (b)Compression factor.
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Single PM-Mach Zehnder Interferomter With Length
(16cm)
The output spectrum for the single PM-Mach-Zehnder Interferometer

was visualized by using optical spectrum analyzer after applying different
mechanical forces, weights in (g) , on the PM fiber cross sectional area and PM

fiber splicing regions as shown in figure(3.7).
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Figure (3.7): The spectrum of the single PM-Mach Zehnder Interferomter
after applying different weights on the PMF in case of single PM-MZI with

PM length 16cm (a)cross sectional areas (b) micro cavity splicing regions.

Table (3.3) lists the values of the shift in the central wavelength, the
FWHM (spatiaity) » FWHM  (remporanty) ;output optical power and compression factor
for single PM-Mach-Zehnder interferometer after applying different weights on
the cross sectional areas of PM fiber and PM fiber splicing regions. In this table
the values of the central wavelength , FWHM spaiany) and the peak power were
visualized by using optical spectrum analyzer and the values of, FWHM

(Temporally) Was calculated according to equations(1.4) .
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Table (3.3): The effect of different weights on the central wavelength, FWHM spatiaily ), FWHM (temporaity),OUtput optical power

and compression factor for Single PM-MZI cross sectional areas and micro cavity splicing regions with PMF length (16cm).

weights

(9)

10

20

50

100

(nm)

Cross  Splicing
section = regions
1547.441 | 1547.441
1547.387 = 1547.394
1547.380 | 1547.401
1547.371 = 1547.406
1547.365 | 1547.419
1547.362 = 1547.420

FWHM patian

Cross
section

174.139

243.265

233.523

216.396

204.568

195.317

Splicing

regions

174.139

251.584

250.175

245.861

244.538

221.709

FWHM

(temperoal)
Cross  Splicing
section  regions
0.045836 | 0.045836
0.032809  0.031724
0.034177 | 0.031903
0.036882  0.032463
0.039014 | 0.032639
0.040651  0.036000

Peak power
(PW)

Cross Splicing
section regions
3891.02 3891.02
3307.67 3209.28
3458.99 3267.24
3726.88 3282.32
3178.20 3754.77
3874.71 3818.16

Co

mpression

Factors

Cross  Splicing

section  regions

1.64

1.17

1.22

1.32

1.39

1.46

1.64

1.13

1.14

1.16

1.16

1.2
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From tables (3.3), we can see the spatial FWHM for the pulses after
propagated via (PMF with length 16cm) changed in different values after
applying different weights, fig (3.8a) shows these changed in the FWHM for the
pulses. The applying force on the PMF to achieve the exponentially decreasing

dispersion and exponentially increasing nonlinearity profiles.
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The compression factor is a good indication for obtaining a compressed
pulse of the laser source. By using equation (1.3) the best compression factor
obtained were (1.13,1.14) for PMF with length 8cm after applying (5,10) g on
the micro cavity splicing regions and cross sectional respectively. Fig (3.8b)
shows the relation between compression factor and the weights which applying

on the cross section area and micro cavity splicing regions.
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Figure (3.8): The relation between the different weights applying on the
cross section area and micro cavity splicing regions of PM fibers
and(a)FWHM and (b)Compression factor.
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Single PM-Mach Zehnder Interferomter With length (24cm)
The output spectrum for the single PM-Mach-Zehnder Interferometer

was visualized by using optical spectrum analyzer , after applying different
mechanical forces, weights in (g) , on the PM fiber cross sectional area and PM

fiber splicing regions as shown in figure(3.9).
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Figure (3.9) : The spectrum of the single PM-Mach Zehnder Interferomter
applying different weights on the PMF in case of single PM-MZI with PM

length 24cm (a)cross sectional areas (b) micro cavity splicing regions.

Table (3.4) lists the values of the shift in the central wavelength, the
FWHM (spatiaity) » FWHM  (remporanty), OUtput optical power and compression factor
for single PM-Mach-Zehnder interferometer after applying different weights on
the cross sectional areas of PM fiber and the PM fiber splicing regions. In this
table the values of the central wavelength , FWHM spatiany) and the peak power
were visualized by using Optical Spectrum Analyzer and the values of, FWHM

(Temporally) Was calculated according to equations(1.4).
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Table (3.4):The effect of different weights on the central wavelength, FWHM spagiaity ), FWHM ' (temporaity),0Utput optical power

and compression factor for Single PM-MZI cross sectional areas and micro cavity splicing regions with PMF length (24cm).

weights

@)

10

20

50

100

(nm)

Cross  Splicing
section = regions
1547.349 | 1547.349
1547.454 = 1547.453
1547.454 | 1547.453
1547.454  1547.452
1547.454 | 1547.451
1547.456 = 1547.448

FWHM spatial

Cross
section
143.774

136.341

134.598

134.847

135.114

129.289

Splicing
regions
143.774

142.339

142.917

143.152

147.653

151.884

FWHM

(temperoal)
Cross  Splicing
section  regions
0.055510 | 0.055510
0.048867  0.056077
0.059302 | 0.055850
0.059193  0.055759
0.059076 | 0.054044
0.061738  0.052553

Peak power
(PW)

Cross Splicing
section regions
5585.64 5585.64
5902.33 5795.18
5177.40 5846.97
5368.98 5923.90
4403.00 5730.68
4562.69 5210.50

Co

mpression

Factors

Cross  Splicing

section  regions

1.98

2.09

2.12

2.12

211

2.21

1.98

1.99

1.93

1.88
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From tables (3.4), we can see the spatial FWHM for the pulses after

propagated via (PMF with length 24cm) changed in different values after

applying different weights, fig (3.10a) shows these changed in the FWHM for

the pulses. The applying force on the PMF to achieve the exponentially

decreasing dispersion and exponentially increasing nonlinearity profiles.
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The compression factor is a good indication for obtaining a compressed

pulse of the laser source. By using equation (1.3) the best compression factor
obtained were (1.88,1.98) for PMF with length 8cm after applying (100, 0) g

on the micro cavity splicing regions and cross sectional respectively. Fig

(3.10b) shows the relation between compression factor and the weights which

applying on the cross section area and micro cavity splicing regions.
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Figure (3.10):

The relation between the different weights applying on the

cross section area and micro cavity splicing regions of PM fibers

and(a)FWHM and (b)Compression factor.
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3.2.2 Cascaded PM-Mach Zehnder Interferometers

Different mechanical forces are used to make the tunability in the
designed fiber interferomter after applying them on the PM fiber cross sectional
area and at the micro cavity splicing regions.
The output spectrum for the cascaded PM-Mach-Zehnder interferometer was
visualized by using optical spectrum analyzer, after applying different
mechanical forces, weights in (g) , on the PM fiber cross sectional areas and PM

fiber splicing regions as shown in figure(3.11).
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Figure (3.11): The spectrum of the cascaded PM-Mach Zehnder
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Interferomter after applying different weights on the cross sectional areas
of the PMF in case of cascaded PM-MZI.(a) regionl and (b) region2.

Table (3.5) lists the values of the shift in the central wavelength, the

FWHM spatiaty) » FWHM ' (remporaity), OUtput optical power and compression factor

for single PM-Mach-Zehnder interferometer after applying different weights on

the cross sectional areas of PM fiber. In this table the values of the central

wavelength , FWHM spaianyy and the peak power were visualized by using

Optical Spectrum Analyzer and the values of, FWHM (temporanry) Was calculated

according to equation (1.4).
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Table (3.5): The effect of different weights on the central wavelength, FWHM spatiaiy ), FWHM (remporatty), OUtput optical

power and pulse compression for Cascaded PM-MZI cross sectional areas.

weights (g) 0 5 10 20 50 100

1547.217 1547.120 1547.166 1547.175 1547.205 1547.210
141.047 179.804 259.730 254.543 185.531 174.181

Region2 = 0.056574 0.044373 0.030738 0.031347 0.043008 0.045811

Region2 | 102615.5 1170.258 1134.625 1047.965 1385.274 1436.773

Region2 2.02
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Figure (3.12): shows the spectrum of the cascaded PM-Mach
Zehnder Interferomter after applying different weights on the PM fibers
splicing regions.

Table (3.6) lists the values of the shift in the central wavelength, the
FWHM (spatiaity) » FWHM (remporanty), OUtput optical power and compression factor
for cascaded PM-Mach-Zehnder interferometer after applying different weights
on the PM fiber splicing regions. In this table the values of the central
wavelength , FWHM spaianyy and the peak power were visualized by using
Optical Spectrum Analyzer and the values of, FWHM (temporanry) Was calculated

according to mathematical equations.
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Table (3.6): The effect of different weights on the central wavelength, FWHM spaiaiy ), FWHM ' (temporaity), Output optical

power and pulse compression for Cascaded PM-MZI micro cavity splicing regions .

weights (g) 0 5 10 20 50 100
Caviyl2 1547217  1547.106  1547.223 1547.206 1547.217  1547.217

Central wavelength | CV2° | 1547.217 | 1547.223 | 1547.222 1547.219 1547.220 | 1547.215
shift (nm) Caviy34 1547217  1547.222  1547.223 1547.217 1547.218  1547.215
Cavityld | 1547217 | 1547.223 | 1547.222 1547.217 1547217 | 1547.212

CavityL2  141.047  129.052 129.850 184.223 151.289  151.261

Caviv23 141.047 | 126.399 132.729 144.714 146.358 | 162.805

FWHM (spatially)  caviva4 141,047 =~ 125.618 133.663 148.847 151.157 161.274
Caviyld | 141.047 | 125.534 136.875 151.443 153513 | 168.483

CavityL2 (0.056574  0.061823  0.061452 0.043314 0.052744  0.05275

WHM ronmrany | 23| 0.056574 | 0,063130 | 0.060119 0.055140 0.054521 | 0.049013
Cavity34 0056574  0.063523  0.059699 0.053609 0.052790  0.049478

CavityL4 = 0.056574 = 0.063565 |  0.058298 0.052690 0.051979 | 0.047361

CavityL2 1026155 1475520  1573.068 1207.950 1566.239  1501.050

peak power (o) | 23| 1026155 | 2083485 | 1565.066 1573.553 1553.639 | 1439.843
Caviy34 1026155  2806.43 1620.402 1525.910 1552.625  1496.763

Cavityld4 | 1026155 | 1637.286 @ 1572.348 1502.287 1537.434 | 1414.033

CavityL2 2,02 221 2.20 155 1.89 1.89

Compression | Cavity23 | 202 2.26 2.15 1.97 1.95 1.75
Factor(Fc) Caviy3d 2,02 2.27 2.13 1.92 1.89 1.77
Cavityld | 2,02 2.27 2.08 1.88 1.86 1.69
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3.3 Conclusions

In this work, compression factor is a figure of merit which indicates the
performance of the system designed using in-line single and cascaded PM-Mach
Zehnder interferometers with PMF made from SMF after stress deformation on
its core to made fiber that called panda fiber.

During the experimental and simulation works, several points were concluded

which are:

1. Maximum excitation to the higher order modes were obtained when the
mechanical force were applied to the PMF's cross sectional area because
this fiber has two stress members which make it highly sensitive to any
physical effect that cause stress deformation optimum compression factor
that are 1.13 after two equally 5g weights are applied on the PM- micro
cavity splicing regions when PM fiber length of 16 cm and in the case of
cascaded PM-Mach Zehnder interferometer compression factor equal to
1.10 after applied 10g weight on the second PM-cross sectional area
with PM fiber length 8 cm.

2. When higher order mode was excited this leads maximum electric field
distribution in the cladding region.

3. Producing uniform temperature distribution that can be called temporal
interference and in this case PM fiber it look like PM-FBG.

4. Due to the presence of many splicing regions that act as a double convex
lens which were excited to the higher order modes in the cladding regions
and then causes broadening FWHM spatially and compressed pulse

temporally.
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3.4 Future works

1. Build Panda-Photonic crystal fiber interferometer for pulse compression.

2. Etching the micro-cavity splicing region to minimize the diffraction region
minimizing R;&R;.

3. Using opti-wave system to design and construct PM-MZI.

4. Using double clad fiber to construct Mach-Zehnder interferometer pulse
compression.

5. Using Comsol multi-physics to design cascaded PM-MZI.

6. Using intense laser with photosensitivity material for producing Fiber Bragg
Grating in the core of SM-PMF or PCF-PMF.
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Appendix B

Corning” SMF-28" Optical Fiber
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Mechanical Specificarions
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Appendix C

Description

Polarization-Maintaining
Fiber: Panda Style

PM1550-XP

Thorlabs” polarization-maintaining fibers, designed for use from 1440 to 1625 nm, are optimized for
data and tel=com applications where ultra-low attenuation over long distances and resistance to

radiation-induced damage are critical.

Specifications
Geometrical & Mechansosl
Core [Hameter 8.5 pm
Cladding Mameter 125 + 2 pam
Coating Marmeter 145 = 15 pm
Core-Clsd Offs=t s0.5 pm
Coating Comoentricity <5 pm
Coating Material Y Cured, Dual Sorylate=
Operating Temperature -40) to B3 "C
Proof Test Level = D00 kpsi (1.4 GHVm®)
Optical
Humerical Aperture 0.125
Attenuation <1 0 dBkm & 1550 nm
Dperating Wavelength 1440 - 1625 nm
Sepond Mode Cut-off 1350 = &0 rem

Mode Fleld Mameter {172 fit - near fleld)

10.1 = 0.4 pm & 1550 nm

Beat Length

5.0 mm & 1550 nm

Hormahzed Cross Talk

s-40 d8 ® 4 m & 1550 nmi
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BS01 o+ To distinguish befwean these signals In the Interizmgram, we would naed o move away 1 em from
the point of 2em paih dfarence (ZPO). The O5A can move &4 cm 1 OPD, and s0 |t can Esove specira
features 0,25 e’ apart. The resoiution of the INsTUMent can be caiculated as foilows:

Al = Ak x 100 = A*

Here, Al ls the resolution In pm, & s the OPD Inem-* (maximum of 0.25 cmr® for this Instument) and A5 the
wavelength In pm.

The resoiution of the O5A 2an be sat to High or Low In the maln window of the sofware. In high esolution
mode, the retmrefiectons translate by the Maamum of 21 ¢m (24 ¢m In OPO), while In low rsdlution mode,
the Fetroreiector fransiate by 025 ¢m (1 cm in OPD). In the Setup sechon of the OSA sofware [Chapter
7], the length of the Interferogram Miat s used In the caiculation of the SDeCTuMm can be cut o remove

spectral contributions from high-Sequency components.

Resolutlon In Spectrometer Mode

30000
10000

E

Resolution (pm)
= g

= Low Resolution Setting
— Resolution

1I'I"'I'l"'l'l"l'l"l'l"'l'l"'
0 1 2 3 4 56 6 7 8 9 10 11 12
Wavelength (um)

Figure 3 RasaluTion 3s & Funcrion of Wavelsngrh

The sensithity of ihe Instrument depends on the elecionic gain wsad In the sensor elecionics. Since an
Increased gain sEing reduces M banawidth of the detectors, the Insinument will Fun siower when higher gain
settings are used. Figure 4 and Figure 5 on the following page show the dependence of the nolse floor on the
waveiengih and OSA model.

D2



OEAZ0X Optical Spectrum Analyzers

Chapter 13 Technical Data

13.1. Common Specifications

Specification Motes Value
Spactral Resolution 7.5 GHz [0.25 o)
Spaciral AGCUracy: - £ ppe
Spactral Pracialon’ T ppm
6
Resolution 0.1 ppm
mw;':‘, Wavelzngn Meter Mode 9 Decimas
(Linewidin <10 GHz]
m:; See Section 4.5 =1 ppm
i 0.2 ppm
Input Fowst W) W SourE 10 Y (10 dam]
inpul Damage Thisehold - 20 e (13 dBim)
Powar Lavel Accuracys . =108
Opfical Rejaction Ratio See gl 413 0
FCPC Comedos’
All Single Mode Paich Cables, Incuding Fluoride
5 Patch Cankes
Input Fber Compatibility - Sikca Mutimoce Paich Caies wih
<350 i Core and NA s 1.2
Fuoride Multimode Patch Cabies with
@100 pm Core and NA s 0.26
Collmaled Beams up o 2% mm
Free-5pacs Input - Red Algrment Laser
Four 4-40 Tape for 30 mm Cage Systems
320 MM X 143 MM X 475 T
Dinanclons - (ZE K59 X 16T

3 Afer 3y 45-minute warm-up, for 3 single mode FCPC-Eminaisd patch cable & an operating temperaiures of X0 - 3050,

. Speciied In pans per millon. For instance, (T the waveiengh being measunsd ks 1 pm, the speciral accuracy wil be

+2 pevi (=3 pr of acouracy Tor every 1 000,000 pm, or 1 pm, of waneisngii )

Speciral Precizion ks the repestabity with which 3 specral feastunes can be measursd using e peak search ol

Can be et from 0-3 decimais and have an sulo oplion Tat esimakes the reievant number of decimais.

Using B same inpul single mode fber for all measunsmisns,

Limiied by the damage Sneshoid of the intemal components

. Speciisd wsing Abscluie Power Mode, Zem Fll = 2, and Hann apcdization, afer a 45-minuls wars-up, for an
operafing emperature of 20 - 30 “C. (The disnent apccizabion modes avallabis in the CEA softesars are desoribed R
Section 96.2.) The specied wavsiength range i 400 - 1000 nm for DEAZD1C, 500 - 1600 nm for DEASIRC, 1.0~
24 i for CEADAC, 1.3 -5.0 pm for CEAZ0SC, and 2.0 - 11.0 pm for DEA20TC. Each specHication i valld for a
singie mods FCPC-beminaied paich cable, & well a5 for a collmated fres-cpace beam with damster < 3 mm and
dhwergence < 3 mrad, assuming the Incuded protectve window |s Ins@led in e free-space aperire.

h. Conmeciors for oiher fber Input receptaces ar avalabie upon request. Contact isoheupportthorabe. oom for

details.
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