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ABSTRACT

All-optical fiber based-sensors, due to their intrinsic characteristic of
simple, compact size, cost-effective, resistance to electromagnetic
interference, good hostility to corrosion, durability, flexibility, accuracy and

SO on.

A high sensitivity refractive index (RI) sensor depends on the theory of
multimode interference (MMI) has been fabricated and investigated. This
effect was experimentally demonstrated. The performance of the RI sensor
with different coreless fiber diameters (CF) was examined to acquire an
appropriate dimension of extreme evanescent fields. This fabrication of the
sensor has been done by reducing the coreless fiber (CF) with etching process
for measuring the refractive index of Sodium Chloride solution and different
fluids. The working principle of this Rl sensor depends on the multimode
interference (MMI) theory. In this work, the RI sensing structure comprises
of single-mode fiber-coreless fiber-single mode fiber (SCS) configuration and
the encirclement refractive index behaves as the cladding of the CF. RI sensor
was studied for three different lengths with 20, 25 and 30 mm of CF which is
represented the sensing area. Since the CF diameter is an essential factor in
SCS fiber configuration to attain extreme sensitivity, the effect of CF diameter
on the RI sensing sensitivity was investigated. Accordingly, various diameters
of CF of 100, 75 and 50 um were achieved for each length. The CF diameter
was chemically etched using 40% hydrofluoric (HF) acid immersion. The

construction method of SCS fiber configuration began with stripped-off the



acrylate coating from CF and SMF, then the CF fusion spliced from both ends
with SMF. Then, the fabricated SCS construction was set in a V-shaped
groove. This groove was utilized to include the etching liquid acid (HF 40%).
The 100, 75 and 50 um CF diameter was realized by controlling the etching
time. The etching method was retained in CF section, and the splicing region
was tested under the microscope in every etching process to make sure that
this area did not effected by HF.

The experimental results of the SCS configuration encompassed of the etched
CF at 50 um diameter with a CF length of 25 mm exhibited a maximum
wavelength shift is about 50.6 and the greatest sensitivity is about 1012
nm/RIU for NaCl solution when the concentration is 25%. While for the
refractive index of 1.352, a maximum wavelength shift is 56 and the greatest
sensitivity is 1058 nm/RIU for fluids. The length and diameter of CF would
influence the output spectra and there is an optimum length for every diameter
to preserve the self-imaging and reduction of the losses. The linear fitting
coefficient (R?) is 0.998 for SCS fiber configuration with 50 pm diameter and
25 mm length, which exhibits an excellent RI sensing features of the SCS-

based sensor.
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Chapter One Introduction And Basic Concept 1

1.1 Introduction:

Recently, there is more interest in the optical fiber sensors due to their
potential in several applications such as biomedical, chemical, biological,
environmental, military and medical applications [1-6]. These sensors that
have been designed and developed making a lot of attention for measuring
many parameters such as temperature, magnetic fields, humidity,
acceleration, pressure, vibration, strain and refractive index [7]. Optical fiber
for sensing devices offers many advantages such as, small size, immunity to
electromagnetic, flexibility, accuracy, good corrosion resistance, durability,
capability for remote operation and high sensitivity [8]. The sensors may have
different structures that have been fabricated using many types of optical fiber
such as: single mode fiber (SMF), multimode fiber (MMF), photonic crystal
fiber (PCF), Brag Grating fiber (BGF) and coreless fiber (CF).

The refractive index sensors is the basis of the most of optical fiber sensing
applications, such as biomolecule detection, medical diagnostics and chemical

concentration sensing [9].

The major way to measure the sensitivity of the surrounding RI, is by using
the coreless fiber (CF). The proposed refractive index (RI) sensing structure
consists of SMF-CF-SMF (SCS) structure and the surrounding refractive

index acts as the cladding of the coreless fiber (CF).

The SCS structure of the optical fiber sensor depends on the principle of the
multimode interference (MMI) which occurs when the core mode of the lead
in single mode fiber section, a number of high-order modes are excited and

propagated along the coreless fiber, at the second splicing point, the high-
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order modes are coupled and back to the core fiber of the lead out single mode
fiber.

The effective sensing section is presented by the coreless fiber (CF) with
different lengths surrounded by a solution with variable concentrations
(variable refractive index), where the sensing section spliced between two
single mode fibers (SMF).

1.2 Optical Fibers

A thin flexible and transparent wire prepared for light propagation, its
structure made of glass or silica. An optical fiber consists of three parts: the
buffer coating, the cladding and the core as shown in figure 1.1 where the core
represent the heart of the optical fiber while the cladding is the outer and
surrounding by a layer of protective materials such as acrylate polymer or
polyimide. The refractive index of the core (n;) always is higher than the
refractive index of the cladding (nq), this difference in refractive indices gives
the light the ability to be guided and the phenomena of total internal reflection
will appear [10]. The optical fiber can be used for many medical,
communication and industrial applications for its advantages of low cost,
small size, wide bandwidth, flexibility, minimum attenuation losses and

secure to transfer different signals [11].
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Strength
Member

Cladding

/

Outer
Jacket

Coating

Figure (1.1): optical fiber structure [12].

1.3 Optical fiber types

There are different types of optical fiber that depends on the structure or the

waveguide mode of the fiber such as:

1.3.1 Single Mode Optical Fiber (SMF)

The small diameter of SMF (a) about (8-10) um allows one mode of

light to transmit through it with a clad diameter (d) of about 125 pm.

This type of fiber consists of doped silica core with refractive index (n;) and
fused silica cladding with refractive index (n;) where the n; is slightly higher
than n, [13]. The normalized frequency or the V number plays an important

rule on the cut-off condition as the equation: [14]
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V= koa (N1%-n2)Y?=2z/ h an1 RA) Y2...euevvnrvnnnnn.. (1.1)

Where ko: the wavenumber and can be expressed as:

A: 1s the operated wavelength,

A: fractional index difference and can be showed as:

A= N17N2/ NMieeeeineiireteneeereeeseeesecesacesasennseencnns (1.3)

For single mode operation the V number should be V< 2.405

For the total mode number (M) can be calculates as the followed equation:

We can define the normalized propagation constant (b) as:

b= [(B/ko)*>- n2?] / [N1>-n2?] = [N - n2%] / [N1%-N2?] «.ueeevnnne (1.5)

Where 3 propagation constant, and n : mode index
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1.3.2 Multimode Optical Fiber (MMF)

The larger core diameter of (50-60) um allows many modes of light to
transmit through it with a clad diameter of 125 pum and the difference between

the single mode fiber and the multimode fiber can be shown in figure (1.2)

Multimode fiber

[15].

i

Singlemode fiber

Figure 1.2: Single mode fiber vs. Multimode fiber [16].

The MMF can be classified based on the refractive index:
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1.3.2.1 Step- Index Multimode Fiber

It has core with a refractive index higher in one step than the cladding
refractive index and the light is transmitted in a single path. The light rays
propagate through it in the shape of meridiognal rays which cross the fiber

axis during every reflection at the core cladding boundary [17].

1.3.2.2 Graded- Index Multimode Fiber

This type of optical fiber core has a non-uniform refractive index that
gradually decrease from the Centre towards the core cladding interface but
with a uniform cladding refractive index. The light rays propagate through it
in the form of skew rays or helical rays. They do not pass through the fiber

axis at any time [18].

Cross
Section

\X/

=

1 Cladding

Refractive
Index
Profile

Light
Path

Multi-mode Multimode
Step-index Graded-Index

Figure 1.3: The multimode step-index fiber and the multimode graded-index fiber [19].
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1.3.3 Photonic Crystal Fiber (PCF)

This type of fibers have a specific arrangement of air holes that run
throughout the fiber length. Different materials are used such as silica, Teflon,
PMMA, tellurite and topas for improving the performance of the PCF

structures. The parameters of the photonic crystal structure are:

1. Core diameter (D): It is the diameter of the central solid part of the fiber.
2. Pitch (A): The distance between the centers of the air holes in the fiber.
3. Size of hole (d): It is the diameter of the air hole.

There are two guidance mechanisms depending on the PCF geometry.
It includes (1) Index guided fiber or holey fiber, (2) Photonic band gap fiber.
Index-guided fiber consists of the solid core where light is guided by the
modified total internal reflection whereas photonic band gap fiber has a

hollow core and follows photonic band gap mechanism [20].

1.3.3.1 Index-Guided Fiber

Index-guided fiber is also called holey fiber. It consists of a solid core
and the pattern of holes surrounding that core. Here, the effective refractive
index of the cladding is lower than the core due to the presence of holes in it.
The light travels through the fiber by the mechanism of modified total internal
reflection. Figure (1.4) shows the index-guided fiber. [21]
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1.3.3.2 Photonic Band gap Fiber

It consists of the hollow core. In this type, the center air hole has a
larger diameter as compared to the diameter of the surrounding hole. Due to
this, the core refractive index becomes lower than the cladding and the

principle of conventional fibers do not apply to these fibers.

Depending on the fiber geometry, the bandgap can be shifted to cover the
entire optical domain. Figure (1.5), shows photonic band gap fiber or hollow

fiber [22].

Figure 1.4: Index-guided photonic crystal fiber [23].
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Figure 1.5: photonic band gap fiber or hollow fiber [24].
1.3.4 Coreless fiber (CF)

The coreless fiber is a new type of special fiber and has a uniform
refractive index. It consists of a pure silica glass rod and an acrylate coating.
The regular fiber have an inner core surrounding by cladding while the
coreless fiber simply have a cladding only with a diameter of 125 um as seen
in figure (1.6).

This type has been fabricated with a different operation temperature (-65
_+300C°) and a wide wavelengths operation range (400-2400) pm that can be

useful for many applications [25].

Coreless fiber is considered as a special case of multimode fiber which outer
diameter allows to multimode to be guided through it when the surrounding

medium has lower refractive index than coreless fiber refractive index and
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The absence of a waveguide makes this coreless fiber beneficial for reducing
back reflections or to prohibit damage to the fiber end face in high-power

applications [25].

Single mode fiber Coreless fiber

Figure (1.6): The compression between the single mode fiber and the coreless fiber.

1.4 Theory of Ray Transmission

1.4.1 Total Internal Reflection TIR:

The value of light that transmitted through a medium as radiation in
certain velocity depends on the type of that medium where the transmission

occurs.

In optical fiber the light will transmit as a ray and totally reflected according
to the total internal reflection phenomena. The ratio of the velocity of light in
space to a velocity of light in certain medium is called the refractive index
which effects in how the light reflects when goes through a medium [26].



Chapter One Introduction And Basic Concept 11

When the light incident at larger angle than the critical angle, the light will
reflected back with high efficiency of 99%. The total internal reflection will
occur when the light ray travels from a medium with refractive index lower
(air) to a medium with higher refractive index (glass) and the incident angle
exceeded the critical value. Figure (1.7) shows the transmission of light ray
through a series of TIR at the interface of silica core and a little lower
refractive index silica cladding. The ray has an angle of incidence ¢ at the
interface who is greater than the critical angle and is reflected at the same

angle to the normal axis [26].

Low-index cladding

Core axis
High-index core

Figure 1.8: The transmission of light ray inside the optical fiber.

1.4.2 The Acceptance Angle

Considering the propagation of light in an optical fiber by TIR at the
cladding and core interface it is valuable to magnify upon the geometric optics

approach with reference to light rays entering the fiber. Since only rays by a
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sufficiently shallow grazing angle (for example: with an angle to the normal
greater than ¢c) at the core- cladding interface are transmitted by TIR, it is
obvious that not all rays entering the core of optical-fiber will keep to be
propagated down [27]. The geometry heedful by launching a light ray into an
optical fiber viewed in Figure (1.8), which clarifies a meridional ray (A) at the
critical angle (¢c) within the optical fiber at the cladding and core interface. It
could be spotted that this ray enters the core of optical fiber at an angle (6,) to
the optical fiber axis and is refracted at the air-core interface before
transmission to the core-cladding boundary at the critical angle [30]. Thus,
any rays which are incident into the core of optical fiber at an angle greater
than (6a) will be transmitted to the core-cladding boundary at an angle
minimal than (¢c), and will not be totally internally reflected. This state is also
seen in Figure 9, where the incident ray B at an angle greater than (0a) is

refracted into the cladding and ultimately lost through radiation [28].

L]
Eventually lost by radiation

Conical

Cladding

B

Figure 1.8: The acceptance angle 6a when launching light into an optical fiber [29].
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Therefore for the rays that had been transmitted by TIR within the core
of optical fiber they necessity be incident on the core of optical fiber within
an acceptance cone well-clarified by the conical half angle 6a [30]. Thus 0a is
the greatest angle to the axis at which light may enter the optical fiber in order
to be propagated, and is frequently pointed to as the acceptance angle for the
optical fiber. If the fiber has a steady cross section (like. the core-cladding
interfaces are parallel and there are no cutouts) an incident meridional ray at
angle bigger than the critical angle will keep going to be reflected and will be
transmitted through the fiber. From uniformity considerations it would be
observed that the output angle to the axis will be equivalent to the input angle
for the ray light, assuming the ray come out into a medium of the same

refractive index from which it was input [31].

1.5 Multimode Interference

The structure of the optical fiber sensor is depends on the principle of
the multimode interference (MMI) which occurs when the core mode of the
light lead in single mode fiber section, a number of high-order modes are
excited and propagated along the coreless fiber, at the second splicing point,
the high-order modes are coupled and back to the core fiber of the lead out
single mode fiber [32]. In general, these high order modes construct a
complexes field distribution according to multimode interferences (MMI)
effect. And so on, reproducible bright images or what is called self-imaging
of the input field may be formed at specific locations where the excited modes

are in phase [33].
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The main parameters that influence in the design of such sensor are
the length and the diameter parameters. According to MMI theory, the CF
length can be calculated by the equation [34- 38]:

Ler=P (BLa/4)  WHEre P =0,1,2 covereerrereeererreeeeeeenns (1.6)

Where the parameter p refers to the constructive interference number (self-
imaging number). Such constructive interference can appear at periodic
intervals known by p (p =0, 1, 2 ...), at these lengths the formed images clarify
a profile of a tight width and a high amplitude, and L, is the beat length and

can be expressed as:
Lz = (4NCEDZCE) / (Bho)  teeeeerrrerenenenrncnrncecncscscscsneencennens (1.7)

Thus, the peak spectral response of this CF caused by self-imaging effect can

be expressed as:

2= P (NCEDZCE/ LCE)  seeeeeeeeeeeeeeenencneeeencasensnensennens (1.8)

Here ncr and Dcr correspond to the effective refractive index (RI1) and
the diameter of CF section, respectively. Then MMI will be increases by using
the tapering and/or etching CF outer diameter and thus incensement in MMI

due to varying in peak spectral response and sensitivity of the CF-MZI [39].
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1.6 Evanescent Wave

The evanescent waves are created when the waves traveling in a
medium endure total internal reflection (TIR) at its boundary because they hit
it at an angle greater than the critical angle [40]. The physical illustration for
the presence of the evanescent wave is that the electric and magnetic fields (or
pressure gradients, in the state of acoustical waves) cannot be discontinuous
at a boundary, as would be the status if there was no evanescent wave field.
In optical fiber case, an evanescent wave is created whenever light undergoes
TIR at the core cladding interface. The evanescent wave penetrating a small

distance into the cladding of optical fiber [41].

Figure (1.9) is shown the evanescent wave which decays exponentially from

the interface of core and clad and travelling parallel to it.

! A

~ Evanescent : _____ (_1 ______________________
Field region | | p
I
! -

Standing
wave electric
field intensity

‘--.\

Figure 1.9: The evanescent wave in optical fiber [42].
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1.7 Optical Fiber Sensors

The optical fiber sensors have significant advantages over other types
of sensors and used in wider applications such as the physical properties
measurements [refractive index, strain and humidity], Electric current
measurement, distributed temperature monitoring, spatial displacement
measurement and the application to the gas industry and oil, pressure sensing,

temperature sensing [43].

The optical fiber sensors are categorized depending on the sensing location,

the operating principle and their application.

1.7.1 Based on the sensing location:

On this foundation the fiber optic sensor labeled as intrinsic or extrinsic

sensor. Figure (1.10) shows the extrinsic and intrinsic sensors.

1.7.1.1 Extrinsic Fiber Optic Sensor

The optical fiber simply uses to carry light from and to the outer optical
device where the sensing takes place. In this issue the fiber is just the part that

carries light.
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Light Optical Fiber as
Modulator Transducer

Input //@\ Output
Fiber/

Fiber

/ Environmental Environmental

[ Signal f Signal |

Light Light Light Light
Source Detector Source Detector

Extrinsic Fiber Optic Sensor Intrinsic Fiber Optic Sensor

Figure 1.10: the extrinsic and intrinsic sensors [44].

1.7.1.2 Intrinsic Fiber Optic sensor

The physical parameter changes some characteristic of the propagating
light beam that is sensed, here the optical fiber itself works as transducer, only
a simple source and a detector is used [46]. Table 1.11 shows a Comparison

of Extrinsic and Intrinsic optical sensors.
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Table 1.11: comparison of Extrinsic and Intrinsic sensors [45].

Extrinsic Intrinsic

*  Applications- rotation, acceleration,

' strain, acoustic pressure and vibration,
' More sensitive

*  Tougher to multiplex

' Reduces connection problems

' More elaborate signal demodulation
' More expensive

*  Applications- temperature, pressure, liquid level and flow.
' Less sensitive

*  Easlymultiplexed

*  Ingress/ egress connection problems

' Easier to use

' Less expensive

1.7.2 Based on the intensity:

This sensor senses the variation of the light intensity that transmitted
through the fiber by using a detector that placed at the end of the fiber. The
evanescent wave sensor can be considered one of the intensity based sensor
which uses evanescent field created whenever light transmitted between two

dielectric media and total internal reflection occurs [46].

This type of sensor is used in chemical sensors that useful in measuring
the chemical concentrations. The sensing process is accomplished by
stripping the cladding from a piece of the optical fiber and a light source has
been used that having a wavelength that can be absorbed by the chemical that
is to be detected as shown in figure (1.12 ) [47].
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Figure 1.12: Fiber optic sensor based on intensity modulated (Micro bending sensor)
[48].

1.7.3 Based on the wavelength:

Wavelength modulated fiber optic sensors use the changes in the
wavelength of light for detection. Fluorescence sensors, the Bragg grating
sensor and black body sensors are examples of wavelength-modulated sensors
as shown in figure (1.13, 1.14) [49].

The fiber Bragg grating sensor is the most used sensor in different
applications. This sensor is created by constructing frequent changes in index
of refraction in the core of a single mode optical fiber which caused by strain,

temperature of polarization changes, will result in a Bragg grating shift [50].
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Fiber Bragg Grating

Figure 1.13: Fiber Bragg Grating sensor [51].

Narrow band filter Blackbody

Lens

/ Q
e . Optical fiber

Detector

Figure (1.14): Black Body sensor [52].
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1.7.4 Based on the Phase

The Phase modulated sensors utilize changes in the phase of light for
detection. The optical phase of the light crossing through the fiber is
modulated by the field to be detected [53]. This phase modulation is thereafter
detected interferometerically, by matching the phase of the light in the signal
fiber to that in a reference fiber. In an interferometer, the light is divide into
two beams, where the first beam is exposed to the sensing environment and
undergoes a phase shift and the other beam is isolated from the sensing
environment and is applied for as a reference. Then the two beams will

interfere with each other after they recombined [53].

The most ordinarily used interferometers are Mach-Zehnder, Michelson,

Fabry-Perot and grating interferometers.

1.8 Interferometer types

1.8.1 Fabry- Perot interferometer (FPI)

The Fabry-Perot interferometer (FP1) is normally consist of two parallel

reflecting surfaces splitted by a specific distance [54].

In optical fiber case the interference occurs between two parallel reflectors
surfaces and in FPI these surfaces be either inside or outside the fiber [56].
The extrinsic and the intrinsic FPI sensors are the two main categories of the
FPI sensor [55], where the extrinsic FPI cavity is formed outside the fiber. A

supporting structure with a high reflecting mirrors formed the air cavity as
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shown in figure (1.15 a) and this structure is very useful for obtaining a high

finesse interference signal.

In other hand, the intrinsic FPI sensors have the reflecting mirrors along the
fiber as shown in fig (1.15 b) and this cavity can be formed in many methods
such as fiber Bragg gratings (FBGs), micro machining, thin film deposition
and chemical etching [56-58].

Figurel.15: (a) Extrinsic FPI sensor made by forming an external air cavity, and (b)
intrinsic FPI sensor formed by two reflecting components, R1 and R2, along a fiber [55].

1.8.2 Sagnac Interferometers (Sls)

The Sagnac interferometers (SIs) getting a great attention in sensing
applications. It’s structure consist of an optical fiber loop where a two beams
along the fiber propagates in opposite directions with different polarization
conditions. As clarified in figure (1.16), a 3-dB coupler used to split the light
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beam into two directions and the two counter-propagating beams are

combined again at the same coupler [59].

Input Output

Figure 1.16: The schematic diagram of the sagnac interferometers (Sls) [60].

1.8.3 Mach-Zehnder Interferometers (MZIs)

The MZIs are the most common type of interferometers in sensing
applications according to their flexibility. As shown in figure (1.17), the MZIs
structure formed of two 3-dB coupler and two independent arms which are
the reference arm and the sensing arm. The incident light is split into two
beams in the first 3-dB coupler and then recombined by the second 3-dB

coupler [61].

According to optical path difference (OPD), the interference appears in the

recombined light between the two arms. For the sensing applications, the
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reference arm is maintain isolated from outer variation and only the sensing
arm is exposed to the changing. Then, the variation in the sensing arm induced
by such strain, temperature and RI changes the OPD of the MZI, which can

be easily detected by analyzing the change in the interference signal [62]

Sometimes, the scheme of in-line waveguide interferometer is take place
instead of the scheme of using two separated arms in the MZI since the
apperance of long period fiber gratings (LPGSs) as illustrated in figure (1.18a).
Apart of the beam guided as the core mode of a SMF is coupled to cladding
modes of the same fiber by an LPG, and then re-coupled to the core mode by
another LPG.

/‘ Reference arm
Optical fiber

3-dB coupler | 3B coupler 2

Sensing arm

Figurel.17: The scheme of the MZI [63].

This in-line type of MZI had different optical path difference but the
reference arm and the sensing arm have the same lengths [64].

Dividing a beam into the core and the cladding modes of optical fiber is
splicing two fibers with a minute lateral offset can considers as one of the
methods as seen in Figure (1.18b). According to the offset, a part of the core
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mode beam is coupled to multiple cladding modes without being heavily
influenced by the wavelength [65].

Figure 1.18: (a) a pair of LPGs [64], (b) core mismatch [65].

1.8.4 Michelson Interferometers (Mls)

The Michelson interferometers (MIs) are similar to the MZIs, the main
principle of this interferometer is the interference between the sensing arm
and the interference arm however in the end of each arm the beam is reflected
as shown in figure (1.19a). In fact, the Ml is similar in work to the MZI but
depends on the reflectors. It is fundamental to check the fiber length difference
between the sensing arm and the reference arm of an MI within the coherence

length of the light source [66].

An in-line positioning of Ml is also possible as viewed with Figure (1.19b). A

section of the core mode beam is coupled to the cladding mode(s), which is
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reflected along with the uncoupled core mode beam by the mutual reflector at
the end of the optical fiber [66].

[

Optical fiber / 'Mﬂmll jl.‘lﬂddulﬂ G

3B coupler e

iror )

= |\

Murror

Figurel.19: (a) Main configuration of a Michelson interferometer and (b) The schematic
of in-line Michelson interferometer [66].

1.9 Literature review

Recently, the researchers became more interested in the refractive index
sensors because it’s have wide uses in different applications. In the past ten
years, MZI has been proposed and constructed experimentally with different
optical fiber types and configurations. The survey will be focused on this
approach. The most significant published work are summarized in table (1.1).
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Table (1.1): Summary of the Published Works in Refractive Index Sensor.

Year Author A brief of Published Work Sensitivity Reference

Mach-Zehnder interferometer 67
(MZI) coupled microring is
demonstrated experimentally to
2010 J. Wang et al obtain a high sensitivity as well 111 nm/RIU
as a large range for measuring
change in refractive, BBS (1520-
1620) nm , RI (1.0 -1.538)

Taper-based Mach—Zehnder 68
interferometer (MZI) embedded
in a thinned optical fiber is

demonstrated as a highly 2210.84nm/RI1U
sensitive refractive index (RI)

sensor by decreasing the

diameter of the thinned fiber and
increasing the interferometer
length of the MZI, BBS (1460-

1580) nm, RI1 (1.33-1.42), (1.33-

1.38).

2011 J. Yang et al 430.2 nm/RIU

2011 J.Yang et al Femtosecond laser 172.4 nm/RIU 69
micromachining and arc fusion
splicing were used to
concatenating two micro air-
cavities with two SMF to
proposed Highly sensitive and
robust refractive index (RI) fiber
sensors, BBS (1450-1600) nm,
RI (1.33-1.36)
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2012

L. Xue et al

Enhance the sensitivity of
singlemode-multimode-
singlemode (SMS) fiber

structure in the measurement of
surrounding refractive index (RI)
depositing the multimode fiber
section with a high Rl overlay ,
BBS (1520-1600) nm, RI (1.31-
1.35)

900 nm/ RIU
206 nm/ RIU

70

2012

H-Y. Lin et al

A tapered optical fiber sensor
based on LSPR for RI sensing
and label-free biochemical
detection by using gold
nanoparticle, BBS (1450-
1600)nm, RI1 (1.33-1.403).

392.3 nm/RIU

71

2014

C.Chen et al

e Mach-Zehnder interferometer
(MZI) used to test changes in the
refractive index of sucrose
solutions. RI (1.33-1.37) by
using e two optical coupling
structures are a duplicate of the
beam splitter.

59.7 nm/ RIU

72

2014

J. Gabriel
Ortega-
Mendoza et al

optical fiber sensor based on the
principle of local surface plasmon
resonance to measure the refractive
index in agueous media using silver
nanoparticles, pulsed laser used as a
source.

67.6 nm/RIU

73

2014

Z. Liuetal

Demonstrated the refractive
index (RI) characteristics of

131.64nm/RIU

74
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a singlemode-claddingless-
singlemode fiber structure filter

based fiber ring cavity laser
sensing system,

Fiber laser (1555-1565), RI
(1.333-1.3707).

2015 H. Luo et al measurement of refractive index -23.67 75
(R1) and temperature based on a nm/RIU &
microfiber-based dual inline .
Mach-Zehnder interferometer 812 pm/=C
(MZI), BBS (1 1510- 1590) nm, 3820.23
RI (1.331-1.335) nm/RIU &
-465.7 pm/ °C
2016 Q. Wang et al. Mach-Zehnder mode 260 nm/RIU 76
interferometric refractive index
sensor, which is based on
splicing points tapered SMF-
PCF-SMF (SMF, single-mode
fiber; PCF, photonic crystal
fiber) structure with different
taper diameter, BBS (1530-
1550) nm, RI (1.33331.3737)
2017 Q. Wang et al A high sensitivity of splicing 240.16 nm/RIU 77

regions tapered photonic crystal
fiber (PCF) Mach—Zehnder
Interferometric refractive index
(RI) sensor compared with
cascaded bi-tapered single-mode
fiber (SMF) Mach—Zehnder
interferometer (MZ1), ASE
(1535-1565) nm, RI (1.33-1.38).
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2017

N. A. Salman et
al

Photonic Crystal Fiber
Interferometer Based On
Refractive Index sensor for
different refractive index of
direct splicing and splicing
points tapered SMF-PCF-SMF
Mach- Zehnder interferometer,
Laser Diode 1550 nm, RI (1.33-
1.38)

7.4 pm/RIU

78

2018

S-A.
Mohammed et
al

A refractive index sensor based
on the multimode interference
theory by using the coreless
fiber, BBS (1500-1600), RI
(1.33-1.38)

340.85 nm/RIU

79

2019

H.DU et al

A high sensitive refractive index
sensor based on the cladding
etched photonic crystal fiber

(PCF) Mach-Zehnder
interferometer (MZ1), RI (1.33-
1.38)

211.53 nm/RIU

359.37 nm/RIU

80

2019

W.Yang et al

A novel tapered-single mode-no
core-single mode (TSNS) fiber
refractometer based on
multimode interference, RI
(1.33-1.417).

1517.28nm/RIU

81

2020

T.Li etal

An Ag- graphene layers-
coated H-
shaped photonic crystal fiber (P
CF) surface plasmon resonance
(SPR) sensor with a U-
shaped grooves open structure fo
r refractive index (RI) sensing,

2770 nm/RIU

82
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RI ( 1.33 to 1.36).with the air
hole diameter of .
2020 N.A. Hamza Refractive index sensor based This work

on multimode interference using
SCS structure to measure the
changes in refractive index for
different fluids and NacCl
solution. RI (1.33-1.35),(1.33-
1.38) with CF diameter of 50 um

1058 nm/RIU
1012 nm/RIU

1.9 The Aim of the work

1. Fabrication of the refractive index sensor based on coreless fiber as the

sensing element.

2. Measuring the variation in the refractive index of NaCl solution.

3. Study the influence of changing the diameter of the coreless fiber on

obtained sensitivity.
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2.1 Introduction

This chapter clarify the components that are used during the
experimental work, the sensing elements of the experiment setup and the
procedures. The interferometers used in many applications because of their
benefits. Many researchers had been established and investigated many types
of interferometers such as MZI which consider one of the interferometers that
have a wider uses in sensing field for measuring different parameters such as
concentrations and refractive indices. The refractive index sensor is the most
common sensor and had been fabricated and enhanced in this work by using
different lengths and diameters of coreless fiber as shown in the flow chart

below.



Chapter Two Experimental Setup and Procedures 34

SCS Structure

Figure (2.1): The flow chart of the experiment work of the RI sensor.

2.2 The broadband Source (B.B.S)

In these experiments, a broadband source as shown in figure (2.2) was
used with a wavelength range (1500-1600) nm having output spectral near

Gaussian profile and low ripple from Thorlabs Company. The B.B.S contains



Chapter Two Experimental Setup and Procedures 35

of four parts: Superluminescent laser diode (SLD IC Chipset), Laser Mount
(LM), Temperature Controller (TED200C) and Laser Diode Controller
(LDC210C). The most important part in B.B.S is the IC chip (composed of
14-pins Butterfly laser diode) where the light transmitted from the 1C chip has
14 pins to fix it in LM. LDC control the operating current and the threshold
current. The TED function is to stabilize the emitting wavelength through
controlling the standardized operating temperature. (Appendices A, B, C, and
D).

Figure (2.2): The broadband source (BBS).
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2.3 Single Mode Fiber (SMF-28)

This type of fibers is made to be the main chain in specific specialties
in optical communications and the sensing applications for its tiny losses, fast
transfers, highest information-carrying capacity, high strength, lowest
dispersion and the simplicity in handling. The Specifications of SMF-28 can
be seen in the table (2.1).

Table (2.1): The specifications of SMF-28.

Mode Field Diameter MFD

Wavelength (nm) MFD Values (um)

1310 9.2+04

1550 104 +£05

Dispersion

Wavelength (nm) Dispersion value[(ps/(nm*km)
1550 <18.0

1625 <22.0

Fiber Attenuation

Wavelength (nm) Maximum value (dB/km)
1310 0.33-0.35

1550 0.19-0.20

1625 0.20-0.23
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2.4 Coreless fiber (CF)

The Thorlabs Company made a special type of multimode fiber which
Is called the coreless fiber FG125LA and represent the sensing element in this
work. To reduce the damage in fiber or prevent the back reflections the CF
can be spliced to the SMF-28 and the return loss is more than 65 dB with 0.25
m length of termination fiber. The wavelength range (400 — 2400) nm with
different refractive indices but for the operation wavelength of 1550 um, the
refractive index is 1.444. The specifications of the CF can be shown in table
(2.2).

Table (2.2): The specifications of the CF [Appendix E].

Coreless Fiber specifications

Glass Refractive index | 1.467287 @ 436 nm
1.458965 @ 589.3 nm
1.450703 @1020 nm
1.444 @1550 nm

Wavelength range (nm) | 400-2400

Glass Diameter (um) 125+1

Coating Diameter (um) | 250+5%

Operating Temperature | -40 to 85
CO




Chapter Two Experimental Setup and Procedures 38

2.5 Instrument of Optical Fiber Preparation

2.5.1 Optical Fiber Stripper

To preparing the optical fiber for the sensing purposes, the protecting
layer has to be removed by a stripping tools. As a first step, the coating will
be removed by a stripping tool as the (JIC- 375 Tri — Hole) which consider as
a traditional stripper. In all common fiber stripping function there are three
holes. The first hole is utilized to strip the (1.6 to 3) mm protective coating,
the second hole is to strip the second buffer coating, and the third hole is

utilized to strip the Acrylate coating.

2.5.2 Fiber Optical Cleaving

The second step in preparing the optical fiber is the cleaving process.
The fiber cleaving instruments are applied by Fujikura (CT-30) as illustrate in
Figure (2.3).

The cleaving machine allow for clamping the optical fiber through a clear
position, and offered to make an optical fiber flat face and perfectly smooth.
Through holding the optical fiber low tension and to trigger the operation of
cleaving via touching the end of optical fiber via a vibrating blade and by
cleaving is to cut the end of optical fiber in 900 angle to achieved flat end

cleaved surfaces.
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Figure (2.3): Optical fiber cleaver (CT-30).

To clean the standard single mode fiber and the coreless fiber, a wet
wipe, alcohol or another solvent should be used. When the CF is being
cleaned, the fiber tip should not be exposed to liquids for cleaning the optical
fiber after cleaver, which may cause the liquid to infiltration through the
optical fiber microstructure, resulting in failure of sensing operation, and
possible damage. A dry wiping was utilized to remove the remaining coating
after striping. The optical fiber ends must be checked under a microscope and
then cleaved again in case that the tip of optical fiber is not smooth. As shown
in figure (2.4)
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Figure (2.4): Microscope images of CF edges after cleaving.

2.6 Optical Spectrum Analyzer (OSA)

There are several types of the instruments that designed to monitor the
sensor interference spectra. As shown in figure (2.5), the AQ6370 is
Yokogawa's high speed and high performance Optical Spectrum Analyzer for
characterization of optical communications system and optical components.
The properties of the OSA can be shown in table (2.3).
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Table (2.3): OSA (YOKOKAWA, Ando AQ6370) properties.

Wavelength range

(600-1700) nm

Wavelength resolution High (0.2 nm)
Dynamic range 70 dB
Wavelength meter accuracy +0.01nm

Applicable to

Single Mode and Multimode fiber
test capability

Measurement range (power)

+20 dBm to -90 dBm

Measurement time

0.2 sec (100nm span)

Operating System

Has two USB 1.1 compatible
interfaces. They support large size
removable memory devices such as
Flash ROM and hard disk drives
(HDD).
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Figure (2.5): The optical spectrum analyzer (OSA).

2.7 The Procedures of the Experimental Work

To get the experimental results correctly, a few procedures had been

done and will be mention below:

2.7.1 The Optical Fiber Splicing

After the preparation of the fibers, a fusion splicer Fujikura (FSM-60S)
as shown in figure (2.6) was used to splice the SMF with the CF. This step
was carried out after stripping the outer coating of the fiber (SMF and CF) and
cleans the fibers before the splicer process has begun. The SMF sections have
a core and cladding diameters of 9 pm and 125 pm, respectively with a 1.451

and 1.444 refractive indices for the core and cladding, respectively.
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While the CF section has a diameter of 125 um diameter with a similar
refractive index of 1.444 at a 1550 nm. This process was performed by using
two SMF sections with length of 20 mm for each section and the CF section
with different 3 lengths of ( 20, 25, 30) mm, these two sections will be spliced
with the CF as a sandwich. After building the structures, the sensing section

(CF) should be etched for more enhancements in the sensing process.

Figure (2.6): the fusion splicer Fujikura (FSM-60S).

The typical steps to perform fusion splicing are: Remove any outer
coating from the fiber using stripper then cleave the fiber end at right angles
with 900 using clipper and clean the fiber ends with tissue and alcohol after

that align the fiber ends in V- groove in fusion splicing machine precisely with
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a small gap in between the fibers. Press the set, the splicing motors will align
the fiber ends and Arc fusion will start and check the quality of splicing by
measuring the output power for the obtained spliced fiber, at the end Protect
the splice region through the use of a heat shrink protector or a mechanical

crimp protector.

2.7.2 The SMF-CF-SMF Structure

The RI sensors structure (Single Mode fiber- Coreless Fiber- Single
Mode fiber) is proposed and fabricated by using different lengths of CF
spliced between two pieces of SMF. The SCS structure of the optical fiber
sensor is depend on principle of the multimode interference (MMI) which
occurs while the core mode of the lead in single mode fiber section, a number
of high-order modes are excited and propagated along the coreless fiber, at
the other splicing point, the high-order modes are coupled and backwards to
the core fiber of the single mode fiber [75]. The sensing section can be
presented by the coreless fiber (CF) with different lengths surrounding by
solution with variable concentrations (variable refractive index), where the

sensing section is spliced between two single mode fibers (SMF).

Figure (2.7) represents the optical sensor system by using the coreless fiber
(Thorlabs Inc.).
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The schematic diagram consists of the broadband source (Thorlabs
B.B.S) with wavelength range (1500 — 1600) nm which connected to the SCS
structure from the first section of SMF (Coring SMF-28). Where SMF spliced
to coreless fiber (three different lengths) by fusion splicer (Fujikura FSM-
60S) and the interference between the fundamental mode and the higher-order

modes happens in a second spliced area between the CF and SMF.

Figure (2.7): The RI sensor system.

2.7.3 The Coreless Fiber (CF) Etching Process

The refractive index sensing area includes CF with different lengths of
(20, 25 and 30) mm, while the diameter is changed three times for every length
to enhance the sensitivity of the sensor. The diameter can be changed by using
a technique that cause a reduction in the CF diameter for different values, it’s
called the etching process.
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The etching process or as known the chemical etching is done by using
the chemical solution called hydrofluoric acid (HF) solution with a

concentration 40 %.

The reduction of the CF diameter was spotted after submerging the coreless
fiber in HF liquid for a few minutes, then removing the CF from the HF and
clean it with ethanol or deionized water. The time of etching is changed as the

required diameter as shown in the table (2.4).

Table (2.4): The time of etching in minutes for each diameter of CF.

The CF diameter (um) The etching time (min)
125 0
100 13
75 23
50 36

The etched fiber will be suffer from chemical changes in its surface and to
ensure that the fiber have a smooth surface with no fractions, a microscopic
Images can be taken by a transmission optical microscope (Euromex
Company, Holland) as shown in figure (2.8)
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Figure (2.8): The Microscopic images of the CF diameters after etching (10X).
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Figure (2.9): The transmission optical microscope (Euromex Company, Holland).



Chapter Two Experimental Setup and Procedures 49

2.8 The Sodium Chloride (NaCl) Solution Preparation

The testing solution (sodium chloride solution) was prepared by taken
a different concentration values of the NaCl powder (5, 10, 15, 20 and 25) mg
weighted in electrical scale for more accuracy. These concentrations will be
dissolved in a 100 ml of deionized water by the magnetic stirrer at room

temperature (25C°).

The testing solution with different concentrations (0%, 5%, 10%, 15%, 20%
and 25%) are used as samples with different RIs. Abbe refractometer (Abbe
refractometer is a bench-top device utilized for refractive index measurement
with high degree of accuracy. Analogue Abbe Refractometer (ARA4)
fabricated by Kriss is used for refractive index measurement. AR4 offers
reading via eyepiece. It has temperature controlled prisms, thermostat
connections for prisms, and an adjustable scale) measured the RI of the
solution with 1.333 to 1.382 range as shown in table (2.5). In our experiment
the structure is totally submerged in the solution (NaCl solution) as shown in
figure (2.10) and before each measurement, the structure is cleaning by the

deionized water and dried in air.

Table (2.5): The concentrations of NaCl with their refractive indices.

The refractive indices (RIU) | The concentrations of NaCl (%)
1.33 0
1.34 5
1.35 10
1.36 15
1.37 20
1.38 25
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NaCl solution

Coreless fiber core

Single mode fiber single mode fiber

Surrounding liquid

Figure (2.10): The NaCl solution testing process.
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3.1 Introduction

This chapter includes the results, discussion of the refractive index (RI)
sensor based on multimode interference, conclusion and future work. To sense
the change of the refractive index at different fluids, a refractive index sensor
has been designed and demonstrated. The experimental results have been
registered by the optical spectrum analyzer (OSA) and the sensor structure
was illustrated by a broadband source (1500-1600) nm. The influence of the
CF length and diameter were studied. This work also measures the sensing
parameters (concentration /refractive index) of the NaCl solution and different
fluids. These experimental results were recorded under a laboratory

Circumstances at room temperature.

3.2 The Transmission Spectrum and the Stability of SCS

Structure

The broadband source (B.B.S) transmission stability was tested to
ensure the assurance of sensor measurements. As shown in Figure (3.1) the
black bold curve represents the SMF test while for the SCS which represented
by the red bold curve to test the function of the structure. This structure consist
of CF spliced between two pieces of SMFs. The SCS filtered some of the
wavelength so it acts as a band pass filter due to a multimode interference
where the fundamental mode from the SMF at the first splicing region will
split into multimode and coupled at the second splicing region. The single
mode fiber structure (SS) and the SCS structure can be shown in Figure 3.2.
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Figure (3.1): B.B. source transmission with SMF and SCS.
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e
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Figure (3.2): The schematic diagram of (A) SMF, (B) SCS.
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3.3 The Influence of CF Length on the RI Sensor Sensitivity

In this work, the effectiveness of the CF length on the sensor sensitivity
was studied by using a CF fixed diameter of 125um with different CF lengths.
The SCS structure was prepared by spliced two pieces of SMF with a piece of
CF (20, 25, and 30) mm by fusion splicer. The first end of the structure
connected to the BBS and the second end connected to the OSA. The changes
of the refractive indices of the testing materials (solutions and fluids) were
used to study the wavelength shift as function of refractive index which

clarified by the experimental result as shown:

3.3.1: RI Sensor based on CF at different lengths

A different values (20, 25 and 30) mm of CF length was used in the
experimental setup with different refractive index of (air, deionized water,
ethanol and acetone) to measure the variation in wavelength shift. This
variation can be seen in figure (3.3, 3.4 and 3.5) which represents the variation
of the output power with the wavelength where the black line for air, red line
for deionized water, blue for ethanol and purple for acetone. The results had
shown the highest sensitivities for CF lengths (20, 25 and 30) mm are (255,
266.6 and 245) nm/RIU for acetone with wavelength shifts of (13, 13.6 and

12.5) nm respectively.
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Figure (3.3): The output power versus wavelength for CF length of 20 mm.
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Figure (3.4): The output power versus wavelength for CF length of 25 mm.
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Figure (3.5): The output power versus wavelength for CF length of 30 mm.

3.4 Relation between CF Length and the RI Sensor Sensitivity

Since the wavelength is a function of refractive index as seen from
Figures (3.3, 3.4 and 3.5), so the wavelength dips shifted toward longer
wavelength (red- shift) when the refractive index increases from (1 for air to
1.3501 for acetone). The relationship between the refractive index and the
wavelength shift can be seen in Figure (3.6). There was a slight variation in
the wavelength shift and sensitivity for different CF lengths and fixed
diameter, this because of the self-imaging on the MMI principle.



Chapter Three Results And Discussion 56

Table (3.1) represent the sensitivity with the different lengths of CF and fixed
diameter at 125 pum.

|Equation y=a+b%

Residual Sum 0.00442
of Squares

Pearson's r 0.99975
Adj. R-Square 0.99902
Value Standard Err
Intercept -261.785 6.05568
Slope 2032110 4.50227

—-L=20mm
—8—-L=25mm
—dh—L =30 mm

_
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£
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Refractive index

Figure (3.6): The wavelength shift versus the refractive index of different fluids with

different CF lengths.
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Table (3.1): The sensitivity of RI sensor with different CF lengths and fixed

diameter.
CF length (mm) Wavelength shift RI sensor sensitivity
(nm) (nm/RIVU)
20 13 255
25 13.6 266.6
30 12.5 245

3.5 The etched CF Diameter Influence on the Rl Sensor
Sensitivity

The RI sensor sensitivity influenced by reducing the diameter of the CF
to different values by the chemical etching process. The diameters were
reduced for each CF lengths (20, 25 and 30) mm to enhance the sensitivity of
RI sensor. The SCS structure was prepared by spliced the cleaved CF with
two pieces of SMF by fusion splicer. The CF piece has been etched by the (40
%) HF to reduce the CF diameter from 125 pum to 100, 75 and 50 um,
respectively. This work has been demonstrated by testing the performance of
the SCS structure by using different fluids (varies refractive indices). The
wavelength shifts acts as the function of the refractive index and has been

shown experimentally.
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3.5.1 RI Sensor for Fixed CF Length of 20 mm with Different

Diameters:

3.5.1.1 Etched CF Diameters of RI Sensor

After preparing the fixed CF length of 20 mm in the SCS structure, the
CF diameter has been reduced for the values (100, 75 and 50) um. A different
fluids with different refractive indices have been shown in Figure (3.7, 3.8
and 3.9) where the colored lines in the transmission spectrum of black, red,
blue and purple represents the refractive indices of air, deionized water,

ethanol and acetone ,respectively.

The transmission spectrum had a maximum wavelength shifts of (21.6, 22.6
and 39.8) nm for acetone and the sensitivities of RI sensor are (423.5, 443.1

and 780.3) nm/RIU respectively.
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Figure (3.7): The output power versus wavelength for CF diameter of 100 um and fixed
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Figure (3.8): The output power versus wavelength for CF diameter of 75 um and fixed

length.
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Figure (3.9): The output power versus wavelength for CF diameter of 50 pum and fixed

length.

Table 3.2: The sensitivity of RI sensor for different CF diameters with fixed

length at 20 mm.

CF diameter (um)

Wavelength shift

Sensitivity (nm/ RIU)

(nm)
100 216 423.5
75 22.6 443.1
50 39.8 780.3
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3.5.2 RI Sensor for Fixed CF Length of 25 mm with Different

Diameters:

3.5.2.1 Etched CF Diameters of RI Sensor

After preparing the fixed CF length of 25 mm in the SCS structure, the
CF diameter has been reduced for the values (100, 75 and 50) um. A different
fluids with different refractive indices have been shown in figures (3.10, 3.11
and 3.12) where the colored lines in the transmission spectrum of black, red,
blue and purple represents the refractive indices of air, deionized water,

ethanol and acetone ,respectively.

The transmission spectrum had a maximum wavelength shifts of (20.2, 26.8
and 54) nm for acetone and the sensitivities of RI sensor is (396.07, 525.4
and 1058) nm/RIU respectively.
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Figure (3.10): The output power versus wavelength for CF diameter of 100 um and fixed
length.
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Figure: (3.11): The output power versus wavelength for CF diameter of 75 pum and fixed
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Figure: (3.12): The output power versus wavelength for CF diameter of 50 pum and fixed
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Table 3.3: The sensitivity of RI sensor for different CF diameters with fixed
length at 25 mm.

CF diameter (um) Wavelength shift Sensitivity (nm/ RIU)
(nm)
100 20.2 396.07
75 26.8 525.4
50 54 1058

3.5.3 RI1 Sensor for Fixed CF Length of 30 mm with Different

Diameters:

3.5.3.1 Etched CF Diameter of RI Sensor

After preparing the fixed CF length of 30 mm in the SCS structure, the
CF diameter has been reduced for the values (100, 75 and 50) um. A different
fluids with different refractive indices have been shown in figures (3.13, 3.14
and 3.15) where the colored lines in the transmission spectrum of black, red,
blue and purple represents the refractive indices of air, deionized water,

ethanol and acetone ,respectively.

The transmission spectrum had a maximum wavelength shifts of (14.4, 18.7
and 23.4) nm for acetone and the sensitivities of RI sensor are (282.35, 366.6

and 458.8) nm/RIU respectively.
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Figure (3.15): The output power versus wavelength for CF diameter of 50 um and fixed

Table 3.4: The sensitivity of RI sensor for different CF diameters with fixed

CF diameter (um) | Wavelength shift | Sensitivity (nm/
(nm) RIU)
100 14.4 282.35
75 18.7 366.6
50 23.4 458.8
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3.6 The Influence of the CF Diameter on the Sensitivity

Reducing the CF diameter effected on the sensor sensitivity for each
fixed CF on the SCS structure. From figures (3.7, 3.8, 3.9, 3.10, 3.11, 3.12,
3.13, 3.14 and 3.15), increasing the refractive indices from 1 for air to 1.351
for acetone leads to move the dip wavelength toward the red shift. The relation
between the varied diameter of CF with wavelength shifts for each fixed
length of the CF (20, 25 and 30) mm can be seen in figures (3.16, 3.17 and
3.18) respectively.

When the diameter of the CF reduced from 125 um to 50 um with the fixed
CF length of 20 mm, the sensitivity of RI sensor increases from 255 nm/RIU
to 780.3 nm/RIU.
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Figure (3.16): The wavelength shift (nm) as a function of CF diameter with fixed length
of 20 mm.
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For the CF fixed length of 25 mm with decreased CF diameter from 125um
to 50 pm, the sensor sensitivity rises from 266.6 nm/RIU to 1058 nm/RIU.

Wavelength shift (nm)

— 71 r T r T r 1 r r r 1 1 1 7
60 70 80 90 100 110 120 130
CF diameter (um)

Figure 3.17: The wavelength shift (nm) as a function of CF diameter with fixed CF length

of 25 mm.

For the third CF fixed length of 30 mm with decreased CF diameter from
125 pum to 50 um, the RI sensor sensitivity increases from 245 nm/RIU to
458.8 nm/RIU.
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Figure (3.18): The wavelength shift (nm) as a function of CF diameter with CF fixed
length of 30 mm.

The stimulated evanescent signals will interact with the surrounding RI
and initiate the variation in output spectrum. Besides it can be observed that
when the RI rises with the reduction of CF diameter, the transmission spectra
shifted to longer wavelength (red- shift). This shifting in wavelength will lead

to increases the sensitivity of the RI sensor.
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3.7 The SCS Concentration Sensor

Sodium chloride is an iconic compound also known as salt with
chemical formula NaCl. It has a similar ratio of ions 1:1 (sodium: chloride)
and shaped as solid, clear crystal. Sodium chloride dissolved very well in
water and the ions of NaCl crystal will separate to create the solution. It used

in wide range of industrial applications.

3.7.1 The 20 mm SCS Concentration Sensor

Different concentrations of the NaCl solution were prepared and tested
using the SCS structure with CF length of 20 mm and varies diameters.
Figures (3.19, 3.20, 3.21 and 3.22) represents the transmission spectrum for
diameters of (125, 100, 75 and 50) um respectively, where the black line refers
to air while the other colors are refer to NaCl solution concentrations ranged
from 0% to 25% by 5 % step. The wavelength shifts for different CF diameters
with fixed length of 20 mm and maximum sensitivities for the 25 %

concentration can be noticed in Tables (3.5, 3.6, 3.7 and 3.8).
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Table (3.5): The wavelength shifts (nm) and the maximum sensitivities for
CF fixed length at diameter 125 pm.

Concentration (%) Wavelength shift (nm) | Sensitivity (nm/RIU)
0 11 220
) 11.8 236
10 12.8 256
15 13.8 2176
20 15 300
25 16 320
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Figure (3.19): The transmission spectrum of CF length 20 mm and CF diameter 125 pum.
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Table (3.6): The wavelength shifts (nm) and the maximum sensitivities for
CF fixed length at diameter 100 pum.

Concentration (%) Wavelength shift | Sensitivity (nm/ RIU)
(nm)
0 12.8 256
5 13.8 276
10 14.8 296
15 16 320
20 17 340
25 18.4 368
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Figure (3.20): The transmission spectrum of CF length 20 mm and CF diameter 100 pum.
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Table (3.7): The wavelength shifts (nm) and the maximum sensitivities for

CF fixed length at diameter 75 pm.

Concentration (%) Wavelength shift | Sensitivity (hm/ RIU)
(nm)
0 15.6 312
5 17.2 344
10 18.2 364
15 19.8 396
20 21 420
25 22.6 452
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Figure (3.21): The transmission spectrum of CF length 20 mm and CF diameter 75 pum.
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Table (3.8): The wavelength shifts (nm) and the maximum sensitivities for
CF fixed length at diameter 50 pm.

Concentration (%) Wavelength shift Sensitivity (nm/

(nm) RIU)

0 27.6 552

5 30.2 604

10 32.2 644

15 34.2 684

20 37 740

25 39 780
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Figure (3.22): The transmission spectrum of CF length 20 mm and CF diameter 50 pum.
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3.7.2 The 25 mm SCS Concentration Sensor

Different concentrations of the NaCl solution were prepared and tested
using the SCS structure with CF length of 25 mm and varies diameters.
Figures (3.23, 3.24, 3.25 and 3.26) represents the transmission spectrum for
diameters of (125, 100, 75 and 50) um respectively, where the black line refers
to air while the other colors are refer to NaCl solution concentrations ranged
from 0% to 25% by 5 % step. The wavelength shifts for different CF diameters
with fixed length of 25 mm and maximum sensitivities for the 25 %
concentration can be noticed in Tables (3.9, 3.10, 3.11 and 3.12).

Table (3.9): The wavelength shifts (nm) and the maximum sensitivities for

CF fixed length at diameter 125 pum.

Concentration (%) Wavelength shift (nm) | Sensitivity (hm/RIU)
0 9.4 188
5 10.2 204
10 10.8 216
15 12.2 244
20 12.8 256
25 13.4 268
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Figure (3.23): The transmission spectrum of CF length 25 mm and CF diameter 125 pum.

Table (3.10): The wavelength shifts (nm) and the maximum sensitivities for

CF fixed length at diameter 100 pum.

Concentration (%) Wavelength shift Sensitivity (nm/ RIU)
(nm)
0 13.8 276
5 15.3 306
10 15.6 312
15 16.9 338
20 18.1 362
25 19.1 382
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Figure (3.24): The transmission spectrum of CF length 25 mm and CF diameter 100 pm.

Table (3.11): The wavelength shifts (nm) and the maximum sensitivities for

CF fixed length at diameter 75 pum.

Concentration (%) | Wavelength shift (nm) | Sensitivity (nm/ RIU)
0 17.4 348
5 19.2 384
10 21.2 424
15 22.6 452
20 24 480
25 25.4 508
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Figure (3.25): The transmission spectrum of CF length 25 mm and CF diameter 75 pm.

Table (3.12): The wavelength shifts (nm) and the maximum sensitivities for

CF fixed length at diameter 50 pum.

Concentration (%) Wavelength shift (nm) | Sensitivity (nm/ RIU)
0 35 700
5 38.6 772
10 414 828
15 43.8 876
20 47.6 952
25 50.6 1012
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Figure (3.26): The transmission spectrum of CF length 25 mm and CF diameter 50 pm.

3.7.3 The 30 mm SCS Concentration Sensor

Different concentrations of the NaCl solution were prepared and tested
using the SCS structure with CF length of 30 mm and varies diameters.
Figures (3.27, 3.28, 3.29 and 3.30) represents the transmission spectrum for
diameters of (125, 100, 75 and 50) um respectively, where the black line refers
to air while the other colors are refer to NaCl solution concentrations ranged
from 0% to 25% by 5 % step. The wavelength shifts for different CF diameters
with fixed length of 30 mm and maximum sensitivities for the 25 %
concentration can be noticed in Tables (3.12, 3.13, 3.14 and 3.15).
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Table (3.13): The wavelength shifts (nm) and the maximum sensitivities for

CF fixed length at diameter 125 pm.

Concentration (%) Wavelength shift Sensitivity
(nm) (nm/RIU)

0 6.7 134

5 6.9 138

10 7.8 156

15 9.1 182

20 9.3 186

25 9.8 196
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Figure (3.27): The transmission spectrum of CF length 30 mm and CF diameter 125 pm.
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Table (3.14): The wavelength shifts (nm) and the maximum sensitivities for
CF fixed length at diameter 100 pum.

Concentration (%) Wavelength shift (nm) | Sensitivity (nm/ RIU)
0 10.5 210
3) 11.2 224
10 12.1 242
15 13.1 262
20 14 280
25 14.9 298
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Figure (3.28): The transmission spectrum of CF length 30 mm and CF diameter 100 pum.
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Table (3.15): The wavelength shifts (nm) and the maximum sensitivities for

CF fixed length at diameter 75 pm.

Concentration (%) Wavelength shift (nm) | Sensitivity (nm/ RIU)
0 11.6 232
5 15.4 308
10 15.8 316
15 17.3 346
20 19.5 390
25 21.6 432
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Figure (3.29): The transmission spectrum of CF length 30 mm and CF diameter 75 pm.
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Table (3.16): The wavelength shifts (nm) and the maximum sensitivities for

CF fixed length at diameter 50 pm.

Concentration | Wavelength shift Sensitivity
(%) (nm) (nm/RIU)

0 17.5 350

5 21.2 424

10 22.3 446

15 24.1 482

20 26.1 522

25 217.6 552
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Figure (3.30): The transmission spectrum of CF length 30 mm and CF diameter 50 pm.
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3.8 The Relation between the Concentration and the CF

Diameter of SCS-MZI Concentration Sensor

3.8.1 For 20 mm CF Length of SCS Concentration Sensor

The wavelength dip shifted to longer wavelength when the
concentration of NaCl solution increases (0-25) % for SCS structure with CF
length of 20 mm and diameters of 125, 100, 75 and 50 um. Figure (3.31)
clarified the relation between NaCl solution concentrations and the

wavelength shift.

0.99849
0.99622
Value Standard Error
10.85714 0.08476
0.20343 00056

wavelength shift (nm)

T T
10 15

Concentration (%)

Figure (3.31): The concentration of NaCl solution versus the wavelength shift for CF

diameters and 20 mm CF length.
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3.8.2 For 25 mm CF Length of SCS-MZI Concentration Sensor

The wavelength dip rises to longer wavelength shift when the
concentration of NaCl solution increases (0-25) % for SCS structure with CF
length of 25 mm and diameters of 125, 100, 75 and 50 um. Figure (3.32)
clarified the relation between NaCl solution concentrations and the

wavelength shift.

Equation y=a+bx
Weight No Weighting ~l-D= 125 ym
Residual Sum of 0.19276 D= 100 um
Squares D=75pm
Pearson's r 0.99218 —g-D= 50 ym
Adj, R-Square 0.98053

Value  Standard Error
Intercept 9.38095 0.15888
Slope 0.16686 0.0105

D= 125 pm

L=25mm

Wavelength shift (nm)
- N N W
(&) o (&) o
1 1 1 1

—_
o
1

T
10 15

Concentration %

Figure (3.32): The concentration of NaCl solution versus the wavelength shift for CF

diameters and 25 mm CF length.
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3.8.3 For 30 mm CF Length of SCS-MZI Concentration Sensor

The wavelength dip rises to longer wavelength shift when the
concentration of NaCl solution increases (0-25) % for SCS structure with CF
length of 30 mm and diameters of 125, 100, 75 and 50 um. Figure (3.33)
clarified the relation between NaCl solution concentrations and the

wavelength shift.

Equation y=a+b™
No Weighting —-D-= 125 um
0.42476 D= 100 pm
0.97515 D=75 um
. ~W—D=50ym
Adj. R-Square 0.93864 H
Value Standard Error
Intercept 6.55238 0.23585
Slope 013714 0.01558

N
[$)]
1

D= 125 ym

L =30 mm

N
o
1

Wavelength shift (nm)
o
[

-
o
1

T T
10 15

Concentration %

Figure (3.33): The concentration of NaCl solution versus the wavelength shift for CF

diameters and 30 mm CF length.
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3.9: Effect of the Concentration on the Sensitivity

A three varies lengths of CF (20, 25 and 30) mm were used to build a
refractive index sensor to study the changes of NaCl solution concentration/
RI with the wavelength shift variations as shown in figures (3.18- 3.29). It is
obvious that when the concentration / RI increases, the wavelength dip heads
to red shift. From these results, it can be observed that the greatest RI
sensitivity of the proposed configuration was with CF of 50 um diameter and
25 mm length. It represents the minimum portion of the light transmitting via
the fiber that induces highest evanescent fields, causing in an improvement of
optical interaction between the surrounding RI light and the fiber-guided.
Corresponding to MMI principle, the length and diameter of CF would
influence the output spectra and too there is an optimum length for every
diameter to preserve the self-imaging and reduction the losses. From Figure
3.34, the linear fitting coefficient (R?) is 0.998 for SCS fiber configuration
with 50 um diameter and 25 mm length, which exhibits an excellent RI

sensing features of the SCS-based sensor.

Additionally, it can be observed that the transmission response of the
proposed SCS sensor reveals a significant red-shift, this due to the lower
refractive indices of the surrounding material which the surrounding ambient

function as a cladding layer.
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Equation y=a+b%

Residual Sum of 0.53105
Squares
Pearson's r 0.99839
Adj. R-Square 0.99598

Value Standard Error
Intercept 35.1619 0.26371
Slope 0.61371 0.01742

—
S
=
=
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- —
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Figure (3.34): The wavelength shift versus the concentration of NaCl solution for CF

diameter 50 um and 25 mm CF length.
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Conclusion

In this work, an all-optical fiber Rl sensor based on multimode
interference has been proposed and experimentally demonstrated. SCS
configuration comprises of CF section which represent the sensing area
spliced between two small pieces of SMF. A various diameters of CF of 125,
100, 75 and 50 um with three different lengths 20, 25 and 30 mm have been
employed as a sensing area to substitute the traditional MMF. The effect of
CF diameter variation on the sensor performance has been examined.
Chemical etching process was used to tune the CF diameter from 125 to 50
um. The surrounding medium of the SCS structure were fluids (air, deionized
water, ethanol and acetone) with refractive indices (1.33- 1.38) and NacCl
solution with concentrations (0- 25) %. For the variation of CF length, a slight
difference was noticed in wavelength shift for CF diameter of 125 pum. when
the concentration/ RI increases, the obtained wavelength rises toward the red
shift.

The experimental results of the SCS configuration encompassed of the etched
CF at 50 um diameter with a CF length of 25 mm exhibited a maximum
wavelength shift was about 50.6 nm and the greatest sensitivity is about 1012
nm/RIU for NaCl solution when the concentration is 25%. While for the
refractive index of 1.38, a maximum wavelength shift is 56 nm and the
greatest sensitivity is 1058 nm/RIU for fluids. The SCS structure has attractive
benefits such as low cost, high measurement sensitivity, simple structure, and
fast response. As a result for these advantages it can be considered a suitable
choice for sensing applications. This work and the works of other researchers
were compared based on the structure, diameters, refractive indices and the

sensitivities as shown in table 3.17.
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Table 3.17: comparison between the sensitivities of this work and other

researchers.
researcher | Sensor structure | Diameter RI range Sensitivity Reference
(um) (nm/RIU)
Yong Zhao | SMF-MMF-SMF 40 1.33-14 286.2 81
et al.
Min shao et | SMF-TF-MMF- 90 1.33-1.42 148.27 82
al. SMF
Haifeng DU | SMF-PCF-SMF 112 1.33-1.38 211.53 76
et al.
91 1.33-1.38 359.37
Saif A.etal. | SMF-CF-SMF 60 1.33-1.38 340.85 75
Thiswork | SMF-CF-SMF
50 1.33-1.38 1012
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Future work

1. Fabrication and implementation a refractive index sensor based on different

type of optical fiber such as twin core fiber.

2. Replace the NaCl solution with another chemical solutions had a different

concentrations and refractive indices.

3. Using a different splicing technique such as offset splicing or tapering

splicing.
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LDC200C Senes

General Information

The Thorlabs LDC200C Series Laser Diode Controllers are high accuracy precise injection
current controllers for laser diodes and LEDs. Together with a Thorlabs Temperature Controller
a stable operation of the connected laser diode can be achieved The LDC200C Series
Includes the following types:

¢ LDC200CV - designed for safe operation of VCSEL laser diodes

¢ LDC201CU - ultra low noise current (<0.2uA RMS)

¢ LDC202C, LDC205C and LDC210C - enhanced compliance voltage (»10V) for use with
blue laser diodoes

¢ LDC240C - higher current (4A),

The LDC200C Series controllers are easy to operate via the operating elemaents on the front
panel, Operating parameters are shown on a 5<digit LED display. UP-DOWN keys allow to
select the parameter to be displayed

After switching on a LDC200C Series laser diode controller, It remains in LASER OFF mode.
The laser current can be switched on/off using the appropriate key at the front panel
Additionally the laser current can be switched by applying a TTL signal to the LD remote input
at the rear of the unit

The laser and the photodiode are connected via a 9-pin D-8UB jack at the rear of the unit. The
output for the laser diode and the input for the photodiode are bipolar, thus all polarities of
commercial avallable laser diodes can be connected,

The injection current or the optical output power of the laser diode can be modulated applying a
modulation signal to the input at the rear of the unit

A voltage proportional o the laser diode current |8 provided for monitoring purposes at an
analog control output at the rear,

If an error oceurs or the limit for the laser current is reached, the corresponding LED lights up
and a short beep gives a warning

For a low ripple and noise of the oulput current & mains filter Is installed and the transformer is
shielded carefully

The LDC200C Series controller are cooled by an intemal fan, which protects the unit against

overheating in case of high environmental temperatures, With free air circulation a safe
operation of the unit is guaranteed up to 40 °C ambient temperature

Do not obstruct the air ventilation slots in the housing!

[rm

In order to prevent damages to the laser diode, it is recommended to mount the laser
into a suitable Thorlabs laser diode mount and connect it to the LDC200C Serles using
the supplied Thorlabs CAB400 cable, This ensures the utmost protection of the laser
diode from damage by wrong connection,

© 2014 Thorlabs
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General Information

The thermoelectric Temperature Controller TED200C by Thorlabs is an extremely precise
temperature controller for laser diodes and detectors.

The TED200C is excellently suited for:

« wavelength stabilization of laser diodes

* noise reduction of detectors

* wavelength tuning by regulating the temperature

* modulation of wavelength by tuning the temperature

The unit Is easy to use due to the clearly arranged operating elements on the front panel.
The operating parameters are shown by a 5-digit LED display, the measurement value
shown is selected via keys.

The gain (P-share), the integral share and the derivative share of the PID temperature
control loop can be set independent of each other.

Different temperature sensors can be used with the temperature controller TED200C,
thermistors, or temperature IC sensors: AD590, AD592, LM135, LM 335. With a thermistor

the temperature display is shown as resistance value in ke, if the TED200C is operated
with a temperature sensor IC the temperature is shown in °C,

The output for the TEC current can be switched on or off via key from the front panel.

The temperature sensor and the TEC element are connected by a 15-pin D-sub jack at the
rear of the unit.

Al the output jack a control signal is available to drive an external LED to indicate TEC ON
mode when the TEC current loop is activated.

The set value of the temperature can be changed with a knob at the front panel or via an
analog input at the rear of the unit,

An analog voltage proportional to the actual value of the temperature is available at the
rear of the unit for monitoring purposes.

The unit has been designed for safe operation with environmental temperatures of more
than 40 °C provided that a free alr circulation through the ventilation slots at the rear and at
both sides of the unit is maintained,

Do not obstruct the air-ventilation slots in the housing!

In case of overheating caused by too high environmental temperatures or closed
ventilation slots the unit automatically switches the output off to avoid damages.

The LED "OTP" (over-temperature-protection) indicates the over-temperature.

After temperature drop of about 10 °C the LED "OTP" extinguishes and the output current
can be switched on again by pressing the key "ON"

If an error occurs (OTP or OPEN) the corresponding LED lights up and a beeper gives a
short warning signal.

© 2011 Thorlabs
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Corning® SMF-28® Ultra Optical Fiber
Product Information

CORNING

How to Order

Contact your sales

representative, o call

the Optaal Fiter Castomer

Service Depariment

Phe 16072482000 (US and Canada)
44,1248 525 320 (Europe}

Freail cofic@cnrning com

Please specily Dre fibes type,

attenuation, and quantity

when ordering.

i 9 | Y
bl SRR —— "

Al

Corning® SMF-28% Ultra optical fiber is an ITU-TR dation G.652.0 compliant optical fiber with
Corning’s enhanced low-loss and bend fiber technologies, This full-spectrum fiber has bend performance
that exceeds the ITU-T Recommendation G.657.A1 standard and still splices the same as the installed
base of standard single-mode fibers such as SMF-28e+ fibes. SMF-28 Ultra fiber offers industry-leading
specifications for attenuation, macrobend loss, and polarization mode dispersion values, which provide
a solid fi for new rk deploy as well as upgrades to existing networks. Since
Corning brought the first fiber to market more than 40 years ago, Corning’s leadership in single-mode
fiber tion has been

e U L

uumw" ‘w (

Aabi

P

Optical Specifications

Maximum Attenuation Point Discontinuity
Wavelength Maximum Value® Wavelength Point Discontinuity
{nm) (d8/km) (nm) (dB)
1310 2032 8o =005
1383% =032 1550 =005
1490 =021
1550 <018 Cable Cutoff Wavelength (1, )
s 5020 A sW60nm
* Alternate attenuation offerings available upon request Mode-Field Diameter
A values at this dength rep post
hydrogen aging performance. Wavelength MFD
(nm) (pm)
Attenuation vs. Wavelength 1310 92304
Range Ref.h  Max o Difference 150 104205
L — {d8/hom)
28S-1330 130 0.03 Dispersion
15251575 1550 00 Wavelength Dispersion Value
The attenuation in a gven wavelength range does not (nm) (ps/{nmkm)]
excoed the Aty of the ref s 1550 =180
(2} by more than the value o 625 <110
Macrobend Loss Zevo Dispersion Wavelength (A 1304 nm < A, = 1324 nm
Mandrel  Number Wavelength Induced Tero Dispersion Slope (5, §, % 0.092 pesinm'skm)
Radius of {nm)  Attenuation®
(mm) Tumns (48) Polarization Mode Dispersion (PMD)
T - 3 1550 P oso Value (ps/vkm)
0 i 635 <18 PMD Link Design Value =004
s 0 1550 <005 Maximum Individual Fiber PMD =201
5 0 1625 <030 “Complies with IEC 60794.3: 2001, Section 5.5,
Method 1. {m = 20, Q = 0.01%), September 2001
1310, 1550,
%5 00 1625 00

The PMD lnk design value Is a term used to describe
the PMD of concatenated lengths of fiber {also known
a5 PMDy). This value represents a statistical upper Mmit
Tor total nk PAD. tndividual PMD values may change
when fiber is cabled

TL9000/1SOH00) Cenvirien | @

"The induced attenuation due 1o fiber wrapped around
a mandrel of 3 specified radive

HsuEo) Novemste 204

!
e Supersenss: July 2004
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Dimensional Specifications

Glass Geometry Coating Geometry

Fiber Curl 2 4.0 m radius of curvature Coating Diameter 242 4 5pm
Cladding Diameter 1250 £ 0.7 ym Coating-Cladding Concentricity <12 pm
Core-Clad Concentricity < 0.5 ym

Cladding Non-Circularity £ 0.7%
Environmental Specifications

Induced Attenuation
Environmental Test Test Condition 1310 nm, 1550 nm, and 1625 nm
(dB/km)

Temperature Dependence -60°C to +85°C %0.05
_Temperature Humidity Cycling -10°C to +85°C up to 98% RH %0.05
_Water Immersion 23°C22°C =005

Heat Aging 85°C+2°C <0.05

Damp Heat 85°C at 85% RH =005

CORNING

*Reference temperature = +23°C
Operating Temperature Range: -60°C to +85°C

Mechanical Specifications

Proof Test

The entire fiber length is subjected to a tensile stress = 100 kpsi (0.69 GPa).*
*Higher proof test levels available.

Length

Fiber lengths available up to 63.0 km/spool.

Performance Characterizations

Characterized parameters are typical values,

Core Diameter 82um

Numerical Aperture 034
NA Is measured at the one percent
power level of a one-dimensional
far-field scan at 1310 nm.

Effective Group Index 1310 nm: 14676

of Refraction (New) 1550 nm: 14682

Fatigue Resistance

Parameter (Ng) 20

Coating Strip Force Dry: 0.6 Ibs. (3N)
Wet, 14-day room temperature:
0.6 1bs. (3N)

Rayleigh Backscatter

Coefficient 1310 nm: .77 dB

(for 1 ns Pulse Width) 1550 nm: -82 d8

Corning \ncorpor sted

One
< INY MBS USA

P 6072482000 (U S and Canada)
S0 A23- 020 [ wrope)

Imail. cofic Bcoming com

WA COMNINg Com/opticalt e

Comning, SMF-I0 and SAF-28es are rogistored Liademarks
of Corning Intorporated, Coming, NY

© 2004 Corming Incorpocated Al Rights Beverved
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Description

Fiber

FG125LA
FG250LA
FG400LA

Coreless Termination

These coreless silica termination fibers can be spliced to the ends of standard fiber to reduce back
reflections or prevent damage to the fiber end face. A return loss of greater than 65 dB s achieved by
splicing 0,25 m of coreless fiber to the desired component,

Specifications

FGIZSLA "~ FGBOLA

“lem
Wavelength Range 400 - 2400 nm
Return Loss »65 dB with 0.25 m
Glass Diameter 1254 1pm 250 £ 10 ym 400 £ 15 ym
Coating Diameter 250 pm ¢ 5% 400 # 20 pm 550 ¢ 20 pm
Coating Acrylate
1467287 © 436 om
Glass Refractive Index 1:3:09;053%32;03;:
1,444 ©1550 nm
Operating Temperature 401085 'C
Proof Test Level »100 kpst
#;‘of'"m"‘“‘“ StrOPIO® | vogs13 o FTSA ISt TH8525

&Y
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Specifications to arc fusion splicer (FSM-60S)

Item

Specifications

Applicable fibers

SMF MMF .DSF .NZDSF ete.

Cladding dia./sheathe dia.

80 to150 pum/ 100 to 1000 pm

Splice mode

Total 100 modes

Automatie fiber identification

SMF MMF .NZDSF

Splice loss estimate

Equipped

Attenuation splice

0.1 dB to 15dB by 0.1 dB step

Splice result storage

Last 2000 splices

Viewing methods

2 axis 2CMOS camera with 4.1 LCD

Tension test

1.96t0 225N

Protection sleeve

60mm ,40mm and Fuyikura micro sleeves

Diagnostic function

Equipped
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