Abstract

Generation of ultrashort laser pulses have gained a lot of interest due to their potential applications in optical telecommunication, nonlinear optics, medical treatment, and industrial material processing. Passively Q-switched and mode-locked fiber lasers are the most dominant techniques to generate those short pulses. Saturable absorbers (SAs) are the key components to start the process of short pulse generation. Looking for new SA with good optical properties and able to act as Q-switcher and mode-locker is always desired. In recent years, Transition metal oxides family has received much research attention due to its attractive optical, electronic, mechanical and physical properties.

In this work, two filmy SAs have been fabricated by embedding 0.5 wt% and 2 wt% copper oxide (CuO) nanoparticles into polyvinyl alcohol (PVA) separately. The optical parameters of the prepared SAs have been measured using balanced twin detectors technique. In 0.5 wt% CuO-SA (2 wt% CuO-SA), the practical values of modulation depth, saturation intensity and non saturable absorption were 3.5% (6.42%), 3.3 MW/cm² (9.23 MW/cm²) and 3.7% (6%) respectively. A theoretical study for Q-switched erbium-doped fiber laser (EDFL) was carried out using modified rate equations and it is supported by simulation results obtained using MATLAB2018 software. The theoretical model takes into the consideration the practical parameters of the prepared SAs. Two prepared filmy SAs are incorporated into the laser cavity to realize Q-switching and mode-locking of EDFL. For 0.5 wt% CuO-SA and 2 wt% CuO-SA, stable Q-switched pulses were achieved at pump threshold of 70 mW and 158 mW with central wavelength 1560 nm and 1561 nm respectively. A maximum pulse energy of 66 nJ and 37 nJ, with a shortest pulse width of 2.6 µs and 3.6 µs were recorded at pump power of 159 mW and 300 mW.

By inserting 200 m long of standard single mode fiber (SMF) to compensate the cavity dispersion, a self-started soliton mode-locked operation is also obtained. In 0.5 wt% CuO-SA and 2wt% CuO-SA mode-locked, the emitting train of pulses have 1.7 ps and 1.8 ps pulse width and 983 kHz pulse repetition rate, while the pulse energy is 1.29 nJ and 2.16 nJ and output power is 1.27 mW and 2.13 mW with central wavelength 1560 nm and 1562.5 nm respectively. The experimental results indicate that 0.5 wt% CuO-SA can generate shorter pulse width at low pump threshold. Also these results present the CuO thin film is an appropriate SA for a pulse fiber laser operating with a low pumping power.

LIST OF CONTENTS

CONTENTS	PAGE
Abstract	Ι
List of Contents	III
List of Symbols	V
List of Abbreviation	VII
List of Tables	IX
List of Figures	X
Chapter One: Introduction and Basic Concept	1
1.1 Introduction	1
1.2 Techniques of Pulse Generation	5
1.2.1 Q-Switching Technique	5
1.2.2 Mode-Locking Technique	9
1.3 Saturable Absorber	16
1.3.1 Basic of Saturable Absorber	16
1.3.2 History of Evolution of Saturable Absorbers	20
1.3.3 Copper Oxide (CuO)	23
1.4 Propagation of Pulse in Optical Fiber	25
1.4.1 Fiber Loss	26
1.4.2 Chromatic Dispersion	27
1.4.3 Nonlinearities in Optical Fibers	28
1.5 Soliton Fiber Laser	30
1.6 Erbium-Doped Fiber Laser	32
1.7 Fiber Laser Cavities	35
1.8 Literature Survey	38
1.9 Aim of Work	43
1.10 Thesis Layout	43
Chapter Two: Passively Q-switched EDFL: Theoretical and	
Experimental Results	

CONTENTS	PAGE
2.1 Introduction	45
2.2 Fabrication and Characterization of a CuO based SA	45
2.3 Optical Characterization of the Fabricated CuO-SA	46
2.4 Experimental Passive Q-switcher EDFL based CuO SA	54
2.5 Experimental Results and Discussions	56
2.5.1 SA with 0.5 wt% concentration of CuO	56
2.5.2 SA with 2 wt% concentration of CuO	63
2.6 Numerical Analysis of Q-switched EDFL based on SA	70
2.6.1 Numerical Results	72
2.7 Comparison between Theoretical and Experimental Results	80
Chapter Three: Passively Mode-Locked EDFL based on	85
CuO-SA: results and Discussion	
3.1 Introduction	85
3.2 Experimental Setup for Mode-Locked EDFL based CuO	85
SA	
3.3 Experimental Results and Discussions	87
3.3.1 CuO-SA 0.5 wt%	87
3.3.2 CuO SA 2 wt%	91
3.4 Performance Comparison of Constructed EDFL Based on	95
Two Concentration of SA	
Chapter Four: Conclusions and Suggestions for Future	97
Works	
4.1 Conclusions	97
4.2 Suggestions for Future Works	98
References	99
Publications	114

LIST OF SYMBOLES

SYMBOLE	DESECRIPTIION	UNITS
Δv_p	Frequency gain bandwidth	Hz
$E_{laser}(t)$	Electric field of laser light	V/m
P_p^r	Pump rate of the active medium	W
f _{rep}	Mode spacing frequency	Hz
v _p	Axial laser modes frequency	Hz
$ au_p$	Pulse duration at FWHM	S
$arphi_p$	Axial laser modes phase	
A _{gm}	Doping core area of the active medium	m ²
с	Speed of light in vacuum	m/s
d_{ol}	Dissipative optical loss of the cavity	
E	Electric field vector	
E _{out}	Theoretical output pulse energy	J
E _{ph}	Photon energy	J
h	Plank's constant	m ² kg/s
l _{sat}	Saturation intensity of saturable absorber	MW/cm ²
L	Length of optical fiber	m
Lc	Total ring cavity length	m
L _{gm}	Length of the gain medium	m
lsa	Thickness of the saturable absorber	m
n	Refractive index	
N	Number of modes	
Na	Saturable absorber photocarrier density	
ng	Population inversion density	
N _{sat}	Saturation photocarrier density	m ⁻³
Pout	Theoretical output peak power	W
P_p	Pump power	W

SYMBOLE	DESECRIPTIION	UNITS
R _{oc}	Output coupler	
T _R	Round-trip transit time of the cavity	S
α_{nsat}	Non-saturable absorption of the saturable	
	absorber	
α _s	Modulation depth of the saturable absorber	
γ_{s}	Inversion reduction factor	
Δt	Minimum possible pulse duration	S
Δλ	Modes spacing	m
λ	Central wavelength	m
σ_{gm}	Stimulated emission of the cross sectional area	m ²
	of the gain medium	
$ au_{ m gm}$	Upper laser level life time of the gain medium	S
$ au_{ m s}$	Saturable absorber recovery time	S
$ au_{\phi}$	Life time of the photon in the cavity	
ф	Photon density inside the laser cavity	m ⁻³
ф _{max}	Maximum photon density inside the laser cavity	m ⁻³
ф _(t)	Photon density as a function of time	m ⁻³

LIST OF ABBERVIATIONS

ABBERVIATION	DESECRIPTIION
2D	Two Dimensional
AOM	Acousto-Optic Modulators
ASE	Amplified Spontaneous Emission
CNT	Carbon Nanotube
CSD	Chemical Solution Deposition
CuO	Copper Oxide
CW	Continuous Wave
EDF	Erbium-Doped Fiber
EDFA	Erbium Doped Fiber Amplifier
EDFL	Erbium-Doped Fiber Laser
EOM	Electro-Optic Modulators
Er ³⁺	Erbium Ion
FC	Fiber Connectors
Fe ₃ O ₄	Ferric Oxide
FESEM	Field Emission Scanning Electron Microscopy
FL	Fiber Lasers
FTIR	Fourier Transform Infrared Spectroscopy
FWHM	Full Width at Half Maximum
GVD	Group Velocity Dispersion
KLM	Kerr Lens Mode-Locking
LD	Laser Diode
NA	Numerical Aperture
NALM	Nonlinear Amplifying Loop Mirror
Nd ³⁺	Neodymium Ion
NiO	Nickel Oxide
NLPR	Nonlinear Polarization Rotation
OSA	Optical Spectrum Analyzer

ABBERVIATION	DESECRIPTIION
OSC	Oscilloscope
OTDM	Optical Time Domain Multiplexing
PRR	Pulse Repetition Rate
PVA	Polyving1 Alcohol
QML	Q-switched Mode-Locked
RBW	Resolution Bandwidth
RF	Radio Frequency
SA	Saturable Absorber
SAM	Self-Amplitude Modulation
SEM	Scanning Electron Microscope
SESAM	Semiconductor Saturable Absorber Mirror
SMF	Single Mode Fiber
SNR	Signal to Noise Ratio
SWCNT	Single-Walled Carbon Nanotube
TBP	Time Bandwidth Product
TI	Topological Insulators
TiO ₂	Titanium Oxide
Tm ³⁺	Thulium Ion
TMD	Transition-Metal Dichalcogenides
VOA	Variable Optical Attenuator
WDM	Wavelength Division Multiplexing
Yb ³⁺	Ytterbium Ion
ZnO	Zinc Oxide

TABLE NO.	TITLE	PAGE
2.1	Summary Results for Q-switching EDFL	68
	based on CuO SA	
2.2	Comparison between different types of thin	69
	film based SAs of Q-switched EDFL	
2.3	Simulation Model Parameters	71
3.1	Summary Results for Mode-Locking EDFL	96
	based on CuO SA	

LIST OF TABLES

LIST OF FIGURES

FIGURE	TITLE	PAGE
NO.		
1.1	Different modes of laser operation: (a)	2
	continuous wave (b) Q-switched (c) Mode-	
	locking (d) Q-switched Mode-locking	
1.2	Passive Q-switching operation	6
1.3	Diagram for laser resonator (a) Active Mode-	11
	locking (b) Passive Mode-locking	
1.4	Mode-locked laser pulses in the time and	12
	frequency domain	
1.5	Operating regimes of the Mode-locked with	16
	different dispersion types	
1.6	(a) Absorption at low intensity (most atoms	18
	are in the ground state and ready to absorb a	
	photon) and (b) absorption at high intensity (a	
	significant fraction of atoms are in the excited	
	state and a small fraction of atoms in the	
	ground state are ready to absorb a photon)	
1.7	The effect of SA on light intensity along the	18
	cavity	
1.8	Passive mechanism of Mode-locked with: (a)	20
	Slow SA with gain saturation. (b) Fast SA. (c)	
	Slow SA without gain saturation "soliton	
	Mode-locking"	
1.9	The historical evolution of the saturable	23
	absorber	
1.10	Copper oxide crystal structure	25
1.11	Output optical spectrum of a soliton fiber	31
	laser "Kelly sidebands"	
1.12	Energy level diagram of Erbium ions	34
1.13	Different ring cavity of laser. (a) Standard	37
	ring cavity. (b) Figure eight cavity. (c) Sigma	
	cavity	
2.1	Fabrication steps of CuO-PVA thin film	46
2.2	FESEM image of CuO nanostructures with	48
	concentration: (a) 0.5 wt% (b) 2 wt%	
2.3	FTIR spectra (a) Pure PVA. (b) CuO	49
	nanoparticles	
2.4	Experimental setup for nonlinear	50
	measurement	
2.5	Nonlinear absorption curve of CuO with	51
	concentration: (a) 0.5 wt\% (b) 2 wt\% .	

FIGURE	TITLE	PAGE
NO.		
2.6	Linear absorption setup for saturable absorber	52
2.7	Insertion loss of CuO-SA with concentration:	53
	(a) 0.5 wt% (b) 2 wt%.	
2.8	Setup of passively Q-switched fiber laser	55
	based on CuO-SA	
2.9	Physical image for the EDFL Q-switching	55
	setup in the Lab	
2.10	Measured output laser spectrum of Q-	57
	switched EDFL: with and without CuO SA	
2.11	Optical pulse train corresponding to the pump	58
	variation from 70 mW to 159 mW	
2.12	A Typical pulse profile of 2.6 µs at 159 mW	59
2.13	Pulse repetition rate and pulse width as a	60
	function of pump power	
2.14	The output power and pulse energy as a	60
	function of pump power	
2.15	RF spectrum at 159 mW of 83 kHz repetition	61
	rate.	
2.16	(a) Laser spectrum performance over 1 hour.	62
	(b) Laser peak power fluctuation	
2.17	Measured output laser spectrum of Q-	63
	switched EDFL with 2 wt% of CuO	
2.18	Q-switched pulse at: (a) Threshold value. (b)	65
	Maximum allowable value	
2.19	Pulse profile of 3.6 µs at maximum pump	66
	power of 300 mW	
2.20	Pulse repetition rate and pulse width as a	66
2.21	tunction of pump power	(=
2.21	The output power and pulse energy as a	67
2.22	function of pump power	=0
2.22	Theoretical mechanism for passively Q-	73
	switching pulse generation: (a)Population	
	photon density. (b)Photon density. (c)Photo	
2.22	The specification and a second provide second formation	75
2.25	of pump power (a) 0.5 wt0/ (b) 2 wt0/	/5
2.24	Theoretical pulse analysis and function	76
2.24	of pump power: (a) 0.5 wt% (b) 2 wt%	/0
2.25	Theoretical calculation of pulse width results	70
2.23	as a function of pump power: (a) 0.5 wt^{0} (b)	/0
	as a function of pump power: (a) 0.5 wt% (b) 2 wt^{40}	
	∠ W1%0.	

FIGURE	TITLE	PAGE
NO.		
2.26	Theoretical calculation of pulse repetition rate	79
	results as a function of pump power: (a) 0.5	
	wt% (b) 2 wt%.	
2.27	Theoretical and practical comparison results	81-82
	(CuO 5mg) as a function of pump power: (a)	
	Pulse width. (b) Repetition rate. (c) Pulse	
	energy. (d) Peak power	
2.28	Theoretical and practical comparison results	83-84
	(CuO 20mg) as a function of pump power: (a)	
	Pulse width. (b) Repetition rate. (c) Pulse	
	energy. (d) Peak power	
3.1	Schematic diagram for Mode-locked EDFL	86
3.2	Output spectrum of Mode-locked EDFL at	88
	maximum pump of 159 mW	
3.3	Signal pulse profile using autocorrelator	88
3.4	Train of pulses on the oscilloscope at pump of	90
	159 mW	
3.5	Output power and pulse energy versus pump	90
	power	
3.6	RF spectrum of the Mode-locked pulse	91
3.7	Schematic diagram for Mode-locked EDFL	92
	based on 2wt% CuO SA	
3.8	Output spectrum of Mode-locked EDFL at	92
	maximum pump of 159 mW	
3.9	Train of pulses on the oscilloscope at pump of	93
	159 mW	
3.10	RF spectrum of the Mode-locked pulse	94
3.11	Output power and pulse energy versus pump	95
	power	